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Abstract

During the period of 6/1/2005 - 11/30/2005, we have performed different studies on wireless
sensor networks.

1. We studied multi-target detection in radar sensor networks.

2. We made interference analysis and performance evaluation on UWB Sensor Networks in
hostile environment.

3. An energy consumption and latency estimation scheme based on statistical modeling and
maximal-likelihood detection was investigated for wireless sensor networks.

4. Self-organization in underwater acoustic sensor networks was studied.

5. We designed a cross-layer optimization scheme for mobile ad hoc networks using fuzzy
logic systems.

6. A distributed query processing algorithm for data-centric sensor networks was proposed.

7. We investigated an asynchronous energy-efficient MAC protocol for UWB Sensor Networks.

Ten papers were produced during the past six months, and are attached to this report.

1 Multi-Target Detection in Radar Sensor Networks

Radar as a powerful sensor system has been employed for the detection and location of reflecting
objects such as aircraft, ships, vehicles, people and natural environment. By radiating energy
into space and detecting the echo signal reflected from an object or target, the radar system can
determine the presence of a target. Furthermore, by comparing the received echo signal with the
transmitted signal, the location of a target can be determined along with other target information.

Conventional radar system operates as independent entity. While in a resource-constrained
wireless sensor network, such detached operation may lead to deteriorated performance and waste

of limited resources. Cooperative techniques such as joint coding and joint detection appear to be
very promising in optimizing system performance under constrained resources. In [1], we studied
data fusion in a multi-target radar sensor network.

A lot prior research in data fusion are based on the assumption of lossless communication, i.e.,
the information sent from local sensors is perfectly recovered at the fusion center. Other researchers
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addressed the problem of distributed detection with constrained system resources, most of which
provided the solutions to optimize sensor selection. In another hand, decision fusion with non-ideal
communication channels is studied at both fusion center level and at the sensor level. Channel-
aware decision fusion rules have later been developed using a canonical distributed detection system
where binary decisions from multiple parallel sensors are transmitted through fading channels to
a fusion center. Lin extended the channel aware decision fusion rules to multi-hop WSNs. The
above results, however, are mostly obtained based on one target or one event detection which is
not applicable to multi-target situations. Furthermore, in a radar sensor system, when clutter, the
unwanted echoes from the natural environment is much larger than receiver noise, detection can
be quite different from that when the noise is dominant.

In [1], we presented the theoretical formulation of decision fusion problem for multi-target case.
The objective of this work is to extend the channel-aware decision fusion rules developed to multi-
target radar sensor system. We made the assumption that the multiple targets are stationary
targets in clutter. We used Rayleigh target fluctuation model and Gaussian clutter as our first
stage study. Particularly, we assume the radar when receiving, is a constant false alarm receiver
(CFAR). CFAR automatically raises the threshold level to keep clutter echoes and external noise
from overloading, which performs as a good rejection of clutter.

2 UWB Sensor Networks in Hostile Environment

Since 2002 there has been great increasing popularity of commercial applications based on Ultra
WideBand. This has ignited interest in the use of this technology for sensor networks. Actually,
UWB systems have potentially low complexity and low cost; have a very good time domain reso-
lution, which facilitates location and tracking applications. So, UWB wireless sensor networks are
promising.

One of the most important applications of WSN is in battle field, which means there exist hostile
interferences. Frequency Hopping (FH) technology offers an improvement in performance when
the communication systems is attacked by hostile interference and reduce the ability of a hostile
observer to receive and demodulate the communication signal. This kind of inherent property finds
it a potential position in the UWB sensor networks. Based on the UWB definition released by the
FCC (FCC, 2002) that a signal is UWB if its bandwidth exceeds 500 MHz, the overall 7.5 GHz
bandwidth, that is, frequencies in the range 3.1 GHz to 10.6 GHz as based on the FCC ruling, can
be split into smaller frequency bands of at least 500 MHz each. This character inspired us to design
a hybrid FH/TH-PPM UWB system in [2].

In [2], we studied the performance of a FH/TH UWB sensor network with hostile partial-band
(PB) tone interference and multi-user interferences. Interferences due to the hostile environment
and the Multi-User Access are critical factors affecting performance of the Wireless Sensor Networks.
There is clearly a need of a system that can survive from the severe interference. In this paper, an
analysis is also made for precisely calculating the bit error rates in the presense of multitone/pulse
(tone in frequency domain and pulse in time domain) interference and Multi-User Interference.

3 Energy Consumption and Latency Estimation Based on Statis-
tical Modeling and ML Detection

In [3], we modeled the end-to-end distance for given hops in Wireless Sensor Networks. We derived
that the single-hop distance follows the distribution 2r/R 2 , where R is the transmission range. The
end-to-end distance shows beta distribution for two hops, and approaches Gaussian distribution
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when the number of hops is beyond three. As an application example, we proposed Statistical
Distance Estimation, which shows less distance error than Hop-TERRAIN and APS (Ad hoc Posi-
tioning System). Our results are also applicable to other applications for Wireless Sensor Networks.

Based on this theoretical observation, we applied it to energy consumption and latency esti-
mation based on the number of hops prediction[4] [5]. The potential applications of WSN, such as
environment monitor, often emphasize the importance of location information. Accordingly geo-
graphic routing was proposed to handle such requirement. Most likely, a packet is not routed to a
specific node, but a given location. An interesting question arises as "how many hops does it take
to reach a given location?" The prediction of the number of hops is important not only in itself but
also in helping estimating the latency and energy cost, which are both important to the viability
of WSN.

The question could become very simple if the sensor nodes are manually placed. However, if
sensor nodes are deployed in a random fashion, which is the case for most potential application, the
answer is beyond the reach of simple geometry. The stochastic nature of the random deployment
calls for a statistical study. A natural and obvious estimation would be dividing the distance by
the average inter-node distance (i.e., the average single-hop distance). However, such estimation
may be unable to provide the required accuracy. We propose making a Maximum Likelihood (ML)
decision,

H = argf (Hjr), H = 1, 2,3,... (1)
max

Considering

f(HIr) = f(H,r) (2)
f(r)

the decision rule can be translated into

H = argf(H, r), (3)
max

where f(H, r) is also called objective function.
Generally, for H = n, we have

n n--1 n--I
-{7r[(R+ Eri)2_( -r)2r[(R+ ri)2-( E r']

p(Hn, rn rr, ,rrn - 1) R<r <•nR (4)

otherwise

and

(n-1)R(n-2)R R

P (Hn, rn) = J f ... Jfp(Hn rIrlIr2,..,

R R 0
f (Hn-1, rn-l Irl, r2," , rn - 2) ... f (Hi, rl)dri .. "drn-2drn-l (5)

Theoretically, we can take derivative of (5) with respect to r to obtain the objective function,
use (3) to decide the most likely H given r and give the probability of error for such a decision.
However, (5) is awkward to evaluate and the computational cost could limit the applicability of such
a decision scheme. Therefore, we propose Attenuated Gaussian Approximation for the joint pdf
based on the histogram collected from the simulations. The skewness and kurtosis tests show a good
fit between our approximation and the simulation data. Also, we found the following properties.
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1. a, ; a-,-, which means the neighboring joint pdf's have similar spread.

2. mn - Mn-1 ,-• mn+l - mn, which means the joint pdf's are evenly spaced.

3. 3 < ran-Mrn-i < 5, which means the overlap between the neighboring joint pdf's is small but
O'n

not negligible. (As a rule of thumbs, Q(3) is considered relatively small and Q(5) is regarded
negligible.)

4. mM--_n 2 > 5, which means the overlap between the non-neighboring joint pdf's is negligible.
O-n

5. a < 1. For large density A, a --+ 1. Along with Property 1, this tell us that the neighboring
joint pdf's have nearly identical shape.

These properties visibly simplify the decision rule and error analysis.

we decide H = f if df- 1 < r <_ d, (6)

where dn is the decision boundary given by

dn = oKnmn÷ 1 + 0-n-t-nm (7)

And the probability of error is

00

a 2Q(m3 - -m - + n+1 - (8)
202 )+n [3 2on 2n=3 0 0" ) S

Based on this result, for latency estimation, a good estimator of the total latency of a 1-bit message
is

1[Tt. + (ft - 1)(TtM + Tr.) + Trx] = 1i(Tt. + Trx) (9)

And for energy cost, we have

Etotal (1, r) 2,hlEeiec + 2EfsA --Ymn, (10)
1

where Eeiec is the unit energy consumed by the electronics to process one bit of message, Ef, is the
amplifier factor for free-space path loss.

4 Self-Organization for Underwater Acoustic Sensor Networks

In [6], we are concerned with the optimal cluster size in underwater acoustic sensor networks. An

UnderWater Acoustic Sensor Network (UW-ASN) can be thought of as an ad hoc network consist-
ing of sensors linked by an acoustic medium to perform distributed sensing tasks. To achieve this
objective, sensors must self-organize into an autonomous network which can adapt to the charac-
teristics of the underwater environment. UW-ASNs share many communication technologies with
traditional ad hoc networks and terrestrial wireless sensor networks, but there are some vital differ-

ences such as limited energy and bandwidth constraint, thus the protocols developed for traditional
wireless ad hoc networks are not necessarily well suited to the unique features of WSNs. When a
wireless sensor may have to operate for a relatively long duration on a tiny battery, energy efficiency
becomes a major concern. Another issue in shallow water communications is that due to the limit
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of bandwidth in shallow water communications, multi-hop communication could introduce heavy
interference between cluster members, therefore, each sensor in a cluster communicate directly to
its cluster head and intra-cluster communication should be coordinated by the cluster head in or-
der to maximize the bandwidth usage. We showed that the optimal cluster size is also relevant to
the working frequency of the acoustic transmission. Furthermore, we showed that assigning work-
ing frequency to cluster members according to their distances to the cluster head could minimize

the energy consumption. Clustering has been widely used in pattern recognition, and we use it
to obtain the energy-efficient organization for UW-ASN. Consider a heterogeneous UW-ASN, in
which the low-capacity sensors serves as cluster members and are randomly distributed, and the
high-capacity sensors serve as cluster heads and are manually positioned. If we obtain the optimal
cluster size, then the required number of high-capacity sensors and their ideal positions can also
be determined. If we assume the high-capacity sensors have virtually unlimited energy reserve
compared to the low-capacity ones, only the energy consumption of the low-capacity sensors need
to be counted. Under such circumstances, we derived the optimum cluster size, and we observed
that the frequency allocation could be designed to minimize the energy consumption. Although
the optimum frequency allocation is still elusive, we proposed an objective function, which can be
used to seek such a frequency allocation algorithm.

5 Cross-Layer Design in Mobile Ad Hoc Networks

The demand for Quality of Service (QoS) in mobile ad hoc networks is growing in a rapid speed.
To enhance the QoS, in [7][8], we considerred the combination of physical layer and data-link
layer together, a cross-layer approach. We proposed to use Fuzzy Logic System (FLS) for packet
transmission delay analysis and prediction. We applied both a singleton type-i FLS and an interval
type-2 FLS for the analysis and prediction. Theoretical analysis and simulation data demonstrate
that a type-2 fuzzy membership functions (MFs), i.e., the Gaussian MFs with uncertain variance is
most appropriate to model Bit Error Rate (BER). Recent research and simulation data discovered
that the lognormal distribution could match for the MAC layer service time. So we could also use
the Gaussian MFs to mode the logarithm of MAC layer service time. We used Guassian membership
functions (MFs) to represent the antecedents and the consequent and two FLSs: a singleton type-i
FLS and an interval type-2 FLS are designed to predict the packet transmission delay based on the
BER and MAC layer service time. After that, we could adjust the transmission power according

to the predicted packet transmission delay. Therefore average delay, energy consumption and
throughput performances will change. We implemented the simulation model using the OPNET
modeler. For type-i FLS, We chose Gaussian membership function as antecedents; for interval type-
2 FLS, we used Gaussian primary MF's with fixed mean and uncertain STD for the antecedents.
The steepest decent algorithm was used to train all the parameters based on the 300 data sets. After
training, the rules were fixed, and we tested the FLS based on the remaining 300 data sets. We
summarized the root-mean-square-errors (RMSE) between the estimated packet transmission delay
and the actual delay. Simulation result showed that the interval type-2 FLS performs better than
the type-i FLS. And we used the outcomes of FLS predictors to control the transmission powers.

We assume we could know the actual transmission delay as ideal algorithm before we adjusted the
transmission power. So we could use he simulation result to compare the performances of three
algorithms (type-2 FLS, type-i FLS, and ideal case). For average delay prediction, a type-2 FLS is

better than the type-i FLS, and the idea case is the best among the three. For energy efficiency, the
type-2 FLS is better than the type-i FLS, and the idea case is the lower bound. For throughput,
the type-2 FLS is better than the type-i FLS, and the idea case was set as the upper bound.
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6 Energy Efficient Query Processing in Data-Centric Wireless
Sensor Networks

The widespread deployment of sensor nodes is transforming the physical world into a computing
platform. Sensor nodes not only respond to physical signals to produce data, they also embed
computing and communication capabilities. They are thus able to store, process locally and transfer
the data they produce. From a data storage point of view, wireless sensor network (WSN) can be
regarded as a kind of database, distributed sensor database system (DSDS). DSDS, compared
to traditional database systems, stores data within the network and allow queries to be injected
anywhere through query processing operators in the network. Even though data query processing
methods have been studied extensively in traditional database systems. Few of them can be directly
applied into sensor database systems due to the characteristics of sensor networks: decentralized
nature of sensor networks, limited computational power, imperfect information recorded, and energy
scarcity of individual sensor nodes.

The goal of monitoring through sensor nodes is to infer information about objects from mea-
surements made from remote locations. Since inference processes are always less than perfect,
there is an element of uncertainty regarding the answers. When viewed from this perspective, the
problem of uncertainty, which stands for the quality of query answers, is central to monitoring
applications. Thus, to build useful information systems, it is necessary to learn how to represent
and reason with imperfect information. Considerring quality requirement and power constraint,
we made analysis and classification on sources of imperfect information and energy waste for an
environmental temperature monitoring application in [9]. In the context of our analyzing and un-
derstanding of query answer uncertainty, we utilized image chain method to express the nature
and the source of uncertainty on temperature information derived from remote sensing. There
are three main sources of imperfect information: measurement quality of nodes, which introduces
uncertainty and imprecise information into query answers, point spread function of nodes, which
introduces ambiguity into query answers, and link quality, which introduces incompleteness into
query answers. Fixing other conditions, such as node density, communication range, sensing range
and network coverage, we change those imperfect information sources separately to check the in-
fluences of those imperfect information sources on the correctness of query answers. Simulation
results showed that with measurement errors, misrepresent errors, or missing information increased,
the errors included in query answers are obviously increased and therefore the confidence of query
answers is reduced. In energy waste source, we considerred that within a network, not all available
nodes provide useful information that improves the accuracy of final results. Furthermore, some
information might be redundant because nodes close to each other would have similar data. From
this prospect, collecting raw readings from all nodes to front-end nodes involves large amounts of
raw readings, which will lead to shorter lifetime, especially for energy-limited WSNs.

In additions, we proposed a quality-guaranteed and energy-efficient algorithm (QGEE) for sen-
sor database systems in [9]. We employed an in-network query processing method to task sensor
networks through declarative queries. In query answer confidence control, we modeled the problem-
determining optimal locations for a query, as a k-partial set cover problem and adaptively determine
the value of the radius of disks according to users' quality requirements instead of fixing it when
considering the influence of PSF of nodes on uncertainty of query answers. We formed our query
vector space model (QVSM) to express the correlation between a query and all candidate nodes.
We chose location, measurement quality and remaining battery capacity of nodes as the elements
of QVSM. The decision-which nodes are active to respond queries-is based on their query corre-
lation. That is, nodes with highest query correlation among their one-hop neighbors are chosen
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to participate in related query processing. In QGEE, active nodes are chosen locally leveraging
cooperation among nodes. Besides those, we also controlled the sample size to ensure the sam-
pling distribution of estimators meet users' pre-specified target precision, and utilized a multipath,
power-aware and mobility aware routing scheme to control information collection. Bases on these
strategies, our QGEE can adaptively form an optimal query plan in terms of energy efficiency and
query quality. That is, only a subset of nodes within a network will be chosen to acquire readings
or samples corresponding to the fields or attributes referenced in queries. The goal of our approach
is to reduce interference coming from measurements with extreme errors and to minimize energy
consumption by providing service that is considerably necessary and sufficient for the need of ap-
plications. Moreover, we employed probabilistic method to formulate the distribution of imperfect
information sources in terms of probability distribution function (PDF). Since a statistic measure-
ment on samples can rarely, if ever, be expected to be exactly equal to a parameter, it is important
that a statement describing the precision accompanies estimation. We utilized confidence intervals
to state both how close the value of a statistic being likely to be value of a parameter and the
chance of being close. Hence, using our QGEE scheme, probabilistic query answers can be acquired
on uncertain data. The probabilities to an answer allow users to place appropriate confidence
in it. The simulation results demonstrated that, compared with the query processing algorithm
which has no query optimization, our algorithm can reduce resource usage about 50% on processing
same number of queries, the frame loss rate about 20%. The simulation results for MAXIMUM,
MINIMUM and AVERAGE aggregation operation showed that our QGEE can successfully obtain
suitable confidence intervals to guarantee the true value of query answers locating within this in-
terval with a probability, which is equal to or larger than the pre-specified probability by users
according to various query answer confidence requirement.

7 Energy Efficient Asynchronous MAC protocol for UWB Sys-
tems

Ultra wideband (UWB) technology offers unique advantages for wireless communications: precise
location-timing capabilities, low power, low complexity, and low cost. However, no existing wireless
network successfully takes advantage of the properties of this technology because of the lack of an
efficient medium access control (MAC) technology. Multi-antenna systems have been studied inten-
sively in recent years due to their potential to dramatically increase the channel capacity in fading
channels. It has been shown that multi-input-multi-output (MIMO) systems can support higher
data rates under the same transmit power budget and bit-error-rate performance requirements as a
single-input single-output (SISO) system. However, direct application of multi-antenna techniques
to sensor node impractical due to the limited physical size of a sensor node, which typically can only
support a single antenna. In recent years, virtual MIMO conception have been proposed, which
allows individual single-antenna nodes to cooperate on information transmission and/or reception.
A cooperative MIMO system can be constructed such that energy-efficient MIMO schemes can be
deployed.

In [10], we proposed an energy-efficient MAC protocol: asynchronous MAC protocol for UWB
communications (A-MAC-UWB). From energy efficiency aspect, since, for UWB communication,
circuit energy consumption is comparable to or even dominates the transmission energy since UWB
is low power consumption i.e., a bit rate of 10OKpbs over 5 meters with no more than 1mW power
consumption, we utilize virtual MIMO technology to reduce the idle time for waiting for send-
ing/receiving next symbol. Virtual MIMO strategy can also increase the data rate, and substitute
space diversity for time diversity to improve system performance. Besides this, we also exploit
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multiple working models: sleep and active models. The idle time for waiting to transmit/receive
next data packet is reduced through enforcing nodes into sleep mode to archive energy reservation.
But the latency of data packets is traded off.

In addition, since UWB can support multiple access, our A-MAC-UWB protocol does not use
mutual exclusion (as is commonly done by random access or TDMA protocols) but, in contrast,
allows interference to occur and adapt to it. That is, competing sources are allowed to send
concurrently, causing rate reduction instead of collisions. Slot ALOHA scheme is used in A-MAC-
UWB. One of the advantages for our algorithm is removing the overhead of control packets for
carrier sensing to avoid collision, such as RTS/CTS for CSMA/CA scheme, but also ensuring
successful transmission. For multiuser interference, we set a model to adaptively adjust the data
rate to ensure certain SNR at receiver side, since a Shanon capacity of a multipath fading additive
white Gaussian noise (AWGN) wideband channel is a linear function of SNR. We formulate the
relationship between probability of bit error and signal to noise and multiuser interference ratio
(SNIR).

For optimum design for power on/off phase duration, we considerred the traffic whose arrival
interval follows heavy tailed distribution, instead of Poisson distribution. Based on that, we ac-
quired the probability density function (pdf) for power off phase duration for our algorithm. We
also set up a objective function to carry out not only extend the power off duration as long as
possible, but also ensure as less as possible chance for buffer overflowing for nodes within a cluster.
For power on duration design, we also set up an object function to choose the highest date rate,
which can ensure the BER acquired at receiver side to satisfy with the requirement. Compared
with our previous work, we tried to find a better method to trade off between data packet latency
and energy reservation.
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Abstract

In this paper, we consider the decision fusion of Rayleigh fluctuating targets in multi-radar

sensor networks. Decision fusion and data fusion in Wireless Sensor Networks (WSNs) has

been widely studied in order to save energy. Radar system as a special sensor network, when

implemented for battlefield surveillance, faces bandwidth constraint in real-time applications

instead of energy restriction. A reliable detection of multiple targets in clutter is perhaps the

most important objective in such an echo-location system. In this work, we study the decision

fusion rules of multiple fluctuating targets in multi-radar (MT-MR) sensor networks. The MT-

MR decision fusion problem is modeled as a multi-input multi-output (MIMO) system. We

assume that each radar makes binary decision for each target from the observation, i.e. if the

target is present or not. We derive our MIMO fusion rules based on the target fluctuation

model and compare against the optimal likelihood ratio method (LR), maximum ratio combiner

(MRC) and equal gain combiner (EGC). Simulation results show that the MIMO fusion rules

approach the optimal-LR and outperforms MRC and EGC at high signal to clutter ratio (SCR).

Index Terms: wireless sensor networks, radar, target fluctuation, clutter, MIMO,

data fusion, Rayleigh, optimal likelihood, maximum ratio combiner, equal gain com-

biner



1 Introduction

Wireless sensor networks (WSN) have attracted growing interest in various applications, especially

in the area of battlefield surveillance, health care and telemedicine, environmental and habitat

monitoring. Radar as a powerful sensor system, has been employed for the detection and location

of reflecting objects such as aircraft, ships, vehicles, people and natural environment. By radiating

energy into space and detecting the echo signal reflected from an object or target, the radar system

can determine the presence of a target. Furthermore, by comparing the received echo signal with

the transmitted signal, the location of a target can be determined along with other target related

information [1].

Conventional radar system operates as a pure independent entity. While in a resource-constrained

WSN, such detached operation may lead to deteriorated performance and waste of limited resources.

Collaborative signal and information processing over the network is a very promising area of research

and is related to distributed information fusion [2]. Important technical issues include the degree

of information sharing between sensors and how sensors fuse the information from other sensors.

Processing data from more sensors generally results in better performance but also requires more

communication resources. Similarly, less information is lost when communicating information at a

low level (e.g., raw data), but requires more bandwidth. Therefore, it is a tradeoff between system

performance and resource utilization in collaborative information processing and data fusion.

A lot of prior research in data fusion are based on the assumption of lossless communication, i.e.,

the information sent from local sensors is perfectly recovered at the fusion center. For example, in

[3] and [4], Vashney et. al investigated the optimum fusion rules under the conditional independence

assumption. Other papers [5, 6] addressed the problem of distributed detection with constrained

system resources, most of which provided the solutions to optimize sensor selection. However,

this lossless communication assumption is not practical for many WSNs where the transmitted

data suffers from channel fading and multi-user interference. In another hand, decision fusion with

non-ideal communication channels are studied at both fusion center level [7, 8] and at the sensor
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level [9, 101. In [8], Thomopoulos and Zhang derived the optimal thresholds by assuming a simple

binary symmetric channel between sensors and the fusion center. Their method is quite simple

but requires global knowledge of the entire system. In [7], channel-aware decision fusion rules have

been developed using a canonical distributed detection system where binary decisions from multiple

parallel sensors are transmitted through fading channels to a fusion center. Later, Lin et. al [11]

have extended the channel aware decision fusion rules to more realistic WSN models that involve

multi-hop transmissions. The above results, however, are mostly obtained based on one target or

one event detection which is not applicable to multi-target situations. Furthermore, in a radar

sensor system, when clutter, the unwanted echoes from the natural environment is much larger

than the receiver noise, detection can be quite different from that when the noise is dominant.

The objective of this work is to derive the decision fusion rules of multiple fluctuating targets

in multi-radar (MT-MR) sensor networks. We focus on the detection decision performance of

fused data with the existence of clutter. The MT-MR decision fusion is modeled as a multi-input

multi-output (MIMO) system. We present the theoretical formulation of the MIMO decision fusion

problems. We make the assumption that the multiple targets are stationary targets embedded in

clutter. Rayleigh target fluctuation model and Gaussian clutter are used in our first stage study.

Particularly, we assume that the radar in our scenario, is a constant false alarm receiver (CFAR)

when receiving. CFAR automatically raises the threshold level to keep clutter echoes and external

noise from overloading, which performs as a good rejection of clutter.

The remainder of this paper is organized as follows. In the next section, we introduce the

concept of clutter and target fluctuation model in radar sensor system. In Section 3, we briefly

overview the previous work on fusion rules designed for a canonical parallel distributed detection

system with single hop transmission between sensor nodes and fusion center. In Section 4, we

present our MIMO decision fusion model for multi-target multi-radar sensor networks. Simulation

and performance analysis are presented in Section 5. Section 6 concludes this paper.
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2 Target Detection in Radar Sensor System

Antenna

T iTransmitted signal
Transmitter

4 - ---- -- -TargetEcho signal

Receiver
Range to target

Target detection and
information extraction

Figure 1: Basic Principle of Radar System

The basic principle of radar [1] is illustrated in Fig. 1. An electromagnetic signal is generated

by the transmitter and is radiated into space by antenna. A portion of the transmitted energy

is intercepted by the target and reradiated in various directions. The reradiation directed back

towards the radar is collected by the radar antenna, which delivers it to a receiver. There it is

processed to detect the presence of the target and determine its location. A single antenna is

usually used on a time-shared basis for both transmitting and receiving when the radar waveform

is a repetitive series of pulses. The range, or distance, to a target is found by measuring the time it

takes for the radar signal to travel to the target and return back to the radar. The target's location

in angle can be found from the direction the narrow-beamwidth radar antenna points when the

received echo signal of maximum amplitude. If the target is in motion, there is a shift in the

frequency of the echo signal due to the doppler effect. This frequency shift is proportional to the

velocity of the target relative to the radar. The doppler frequency shift is widely used in radar as

the basis for separating desired moving targets from fixed clutter echoes reflected from the natural

environment such as land, sea or rain. Radar can also provide information about the nature of the

target being observed.

In active radar sensor networks, the received data usually consists of three parts: white thermal

noise, clutter scattered by the land environment, and if a target is present, a reflected or reradiated

4



version of the transmitted signal [12]. That is, we have

y(t) - a(t)s(t) + n(t) + w(t) (1)

in which P(t) and y(t) are the transmitted and received signals, respectively. a(t) is the target

cross section or radar cross section (RCS). It is assumed that n(t) is additive noise and w(t) is the

returned clutter, a distorted version of the transmitted signal P(t). In the work presented here, it

is assumed that the received clutter is much larger than the white thermal noise, i.e w(t) >> n(t).

Thus (1) turns to

y(t) • a(t ) ±) +w(t) (when w(t) >> n(t)) (2)

Classical radar equation takes target cross section or radar cross section (RCS) to determine the

power density returned to the radar for a particular power density incident on the target. Never-

theless, the scattering of electromagnetic energy from a target is a rather complicated phenomenon,

which depends on a number of factors such as target geometry, size, shape, aspect, altitude with

respect to radar antenna etc. Therefore, it has been advantageous to model the target RCSs as a

random variable. Some common fluctuation models are now available in the open literature, i.e.

Swerling chi , lognormal, Rayleigh, Weibull as a compound Rayleigh distribution, Shadowed Rice

target etc. In this work, we treat the target fluctuation as Rayleigh distribution which has the

probability density function (pdf) as

fM(v) = --2 exp - (3)

Where 2o2 is the mean square value of the envelope v.

Clutter is the unwanted echoes from the natural environment such as land, sea, rain, birds,

insects etc. Clutter can be distributed in spatial extent in that it is much larger in physical size

than the radar resolution cell. There are also point or discrete clutter echoes that produce large

backscatter. Because of the highly variable nature of clutter echoes it is often described by a
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probability density function. Some clutters have similar distributions as the target fluctuation

model, e.g., Gaussian, Rayleigh, log-Normal and Weibull. Nevertheless, other distributions have

been proposed to describe the special statistics of clutter including K-distribution, contaminated

normal, gamma and log-Weibull. For the first stage of this work, we set the returned clutter follows

Gaussian distribution with zero mean.

3 Review of Previous Decision Fusion Rules

In a single target, single hop sensor network, the typical parallel fusion structure in a flat fading

channel is depicted in Fig. 2. The received signal at the fusion center from kth sensor is Yk =

hkuk + nk, where hk is the channel fading envelope and nk is the zero-mean additive Gaussian

noise with variance o2. K sensors collect data generated according to either H0 (there is no target

present) or H1 (there is target present) and transmit these decisions over fading and noisy channels

to a fusion center. The fusion center tries to decide which hypothesis is true based on the received

data Yk from all k.

Binary

Decision 'Fusion
(Target • • C enter

present .
or not) Sensor K "

Figure 2: Single-target, single-hop decision fusion model

Assume that the kth local sensor makes a binary decision Uk C {+1, -1}, with false alarm

and detection probability Pfk and Pdk respectively. That is, we have Pfk = P [Uk = 1 Ho] and

Pdk = P [Uk = 11H,]. Several decision fusion rules have been developed based on the above model

in [11]. Throughout this work, we use A(s) to denote the fusion statistics for the single hop, single

6



target transmission model.

"* Optimal LR-based fusion statistic using complete prior knowledge. Assuming complete chan-

nel knowledge, the optimal LR-based fusion statistic was derived as

K Pdkk(+) + (1 - Pdk)Vk-)

k=1 Pfkke(+ ) + (1 - Pf) )(4)

where Y = [Yi, ... , Yk]T is a vector containing observations received from all K sensors, (+) =

e-((Yk-hk)/2_2) and V)-) = e-((Yk+hkP/2a 2 )

"* LR-based fusion rules using only fading statistics for Rayleigh fading channel. Implementing

the optimal LR test as in (4) requires that all a priori information, including the instantaneous

channel gains. Under the Rayleigh fading model, the LR-based fusion statistic using only the

fading parameter is summarized below

K

A = 'PWk ±+(1--Pdk)P-)2 k=1 (1 - Pfk)Ph)(5)

where - ±(+) = 1 + 2/7pyke( 2 y(/T)Q(yk'y) and 1' =

(at/an ?Vo + oa2) with 2o-2 being the mean square value of the fading channel, o-2 is the noise

variance, and Q(-) is the complementary distribution function of a standard Gaussian random

variable.

A two-stage approximation using the Chair-Varshney fusion rule. A direct alternative to the

above LR-based fusion rules is to consider the information transmission and decision fusion

as a two-stage process: first Yk is used to infer about Uk: then, the estimation of Uk are

employed in the optimum fusion rule. Given the model in Fig. 2, the maximum likelihood

(ML) estimation for uk is zik = sign(yk). Applying the fusion rule derived in [11], the Chair-

Varshney fusion rule is obtained as

7



A•s) log (1-Pdk) + lg (Pdk) (6)3 Gi - Pk YPfk/
Yk<O yk>O

"* Fusion statistics using a maximum ratio combiner (MRC). In the low SNR regime, if the local
sensors are identical,i.e., Pdk and Pfk are the same for all ks, then A(s) reduces to a form

analogous to an MRC

A(" K

4= 1 hkyk (7)

k=1

"* Fusion statistics using an equal gain combiner (EGC). At low SNR regime, if the local sensors

are identical,i.e., Pdk and Pfk are the same for all ks, then A(') reduces to a form analogous

to an EGC

K

A•=1 • •(8)
5 K 1EYk(8

k=1

Among the above five fusion rules, A(s) requires complete channel knowledge and provides

uniformly the most powerful detection performance. At low SNR, the MRC statistic provides the

best performance among the three suboptimum fusion rules; while at high SNR, the Chair-Varshney

fusion rule outperforms the MRC and the EGC statistics. The EGC statistic, however, provides

better performance over a wide range of SNR than the MRC statistic and the Chair-Varshney

fusion rule and requires the least amount of prior information.
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4 MIMO decision fusion model for multi-target multi-radar sensor

networks

In our scenario, it is assumed that there are multiple radar sensors and multiple stationary targets

in the field. A radar detects the presence of a target and generates the decision data according to

two hypothesis: H0 : there is no target present and H1 : there is target present. Each decision data

is transmitted to the fusion center, normally a radar sensor as well. In a multi-hop radar sensor

network, the decision data is relayed via several radars to reach the fusion center. When there are

multiple radar sensors and multiple targets in the field, the data fusion problem can be roughly

modeled as a Multi-Input Multi-Output (MIMO) fusion problem. In this paper, we assume the

radar sensors are disparate, geographically dispersed in the field such that the radar observations

or decisions are spatially independent. Fig. 3 illustrates an example of single-hop decision fusion

problem.

Figure 3: MIMO fusion model

Let M denote the number 'of radar sensors and N be the number of targets. The received signal

y(t) at the fusion center at time t is a N x M matrix.
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(t) Wt

Y11. YM1

(9)

S(t) Y(tN

LYlN ... YMNj

We assume that the radar sensors are geographically dispersed, detection decisions are made at

each separate local radar. The element (t) of (9) is the decision (target present or absent ) of theyij

jth target from the ith radar sensor. yij can be represented as

yi3t "W i~ t

Observe that in [11], the researchers assume that both the false alarm Pf and probability of

detection Pd are fixed and identical for all local sensors. Moreover there is no correlation between

the false alarm Pf and probability of detection Pd. In radar system however, this assumption is

very unpractical especially in the heavy clutter situation. One method to suppress the heavy clutter

is to use constant false alarm rate (CFAR) receiver. CFAR automatically raises the threshold level

to keep clutter echoes and external noise from overloading the automatic tracker with extraneous

information. In our study, we assume the receivers of all radar sensors are CFAR which implies

that though the false alarm rate is a constant, the probability of detection of each local radar

sensor varies. We use Pf as the fixed false alarm rate and Pdi to denote the distinct probability of

detection at radar sensor i throughout this work.

We next derive the MIMO decision fusion rules for the multi-target radar sensor networks

starting from the single-hop radar sensor networks.

4.1 Decision fusion rule in multi-target, single-hop radar sensor networks

* Assume we have complete knowledge of the target fluctuation coefficients, the optimal LR-

based fusion rule for the jth target was derived as
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i -M +piK)_ (1- Pdi) - 1,...,N (11)

i=1 PiY -vL -+ f)

Complete decision vector for N targets are denoted as A(P) [A1, A1, ..., AN]T and

e-(jil j ai)
2 /20

2

(12)

e--(YiN--aiN )2 /20,2

e-(Yi1+C'i1)2 /2o,2

e-(Yi2+ai2)
2 /29

2

(13)

e--(yiN+aiN )2/2ol

LR-based fusion rules using only target fluctuation statistics. Under the assumption of Gaus-

sian clutter model and Rayleigh target fluctuation model, the LR-based fusion statistic using

only the target fluctuation coefficients is summarized below

() M Pdi'F(t) +• (1 -Pdi)TPlj)A -)= ± (-•P3) j 1,...,N (14)

where , = (a/rn /-2 + ±o,2,) with 20r2 being the mean square value of the target fluctuation

model, u,2 is the clutter variance.
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1 + 2vF-7yj Q(-yI'y)
i2 /2)2

1 + 2--Yi2e(7 yi21 )(-yi2Y)

IF+W i= 1,..., M (15)

+V2vFy~iNe(-•y•yiN/2 )Q(--YiNY)

V27ryyle(-yy2 •/2)Q y•1y
1 - 2J y ,y •

1 - /2-7'FYi2 e(i'Y 2  )Q(yi2 Y)

i 1 M (16)

1 - V/27yiNe( Y2YN/2)Q(yiNY)

* Fusion statistics using a maximum ratio combiner (MRC). In the low SNR regime, if the local

radar sensors are identical,i.e., Pdi and Pfj are the same for all is, then A(1) reduces to a form

analogous to an MRC

M
--- 3) aijjYj j ---1 .,N(17)

* Fusion statistics using an equal gain combiner (EGC). At low SNR regime, if the local radar

sensors are identical, i.e., Pdi and Pfj are the same for all ks, then A(2) reduces to a form

analogous to an EGC

M

A E Eyij j I,...,N (18)
j=1
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4.2 Decision fusion for multi-target multi-radar sensor networks

When considering a multi-hop radar sensor networks, decision fusion problem for multiple targets

could be quite complicate. For simplicity, we follow the assumption in single-hop case and assume

the relay radar sensors have no direct observation of all the targets. Comparing Fig. 3 with Fig. 4,

the above assumption assures that the MIMO fusion problem for multi-hop remains the same

dimension as the one in the single-hop case.

SCenter

Relay Radar

Figure 4: MIMO fusion model for multi-hop radar sensor networks

We make the further assumption that each relay radar makes a simple hard decision on the

signal transmitted from its last hop radar. Therefore, given that the clutter is Gaussian, we have

sk = sign(ak-lsk-l + wkl1) (19)

Hence, the ultimate received signals at the fusion center transmitted from all the M last hop

radars have the similar form as (9). We also assume that the Rayleigh RCS has unit power, i.e.,

E[c4.] = 1 and Gaussian clutter has variance or2 to facilitate SCR calculation later in the paper.

'131

Implementing the decision rules for single target, multi-hop WSNs in [11] to our multi-target,

multi-hop radar sensor networks, we get the decision fusion rules as follows.
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* Optimal LR-based Fusion Rule

In multi-hop radar sensor network, we assume only the first hop radar sensors are CFAR with

false alarm P0 and probability of detection P0. Let Pdi be the probability of detection at the

ith radar in the last relay, [11] has proved that for one given target detection, P'i A P and

Pf-- P0 at high signal to clutter ratio (SCR). At low SCR, Pdi and Pf'can be approximated

as

1 2mi (-I'= aik) P0.- (20)
2 (v 1ir ) M1 i 2)

1 Mi(k=0_1 aik/

' + ± = 0) (21)Pff 2 (,/_2o.,) Mi --1

Assume there are M radar sensors in the last hop, Mi is the number of hops at the ith radar.

Ceik is RCS value at the kth relay of radar i.

The optimum LR-based fusion rule for multi-target radar sensor networks can be written as

P ) 1 (1 d.i jT I-,- 1.,N (22)

where

e--(2yil ail )Mi /0r2

e-(2yi2C'i2)M' /0r2

1 M (23)

e- (2yiN iN)' M/_1 2
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"* Denote A (2) as the LR rule that corresponds to the case when only the target RCS statistics

are known. A_(2) can be derived for the multi-hop MT-MR sensor networks.

2 f 1 + [Pdi - Q(-yyij)]v yyije('Yyii) 2 /2

i=1 ± [Pf - Q (-yyi y)] v',{yjje('Yyi) 2 /1, .. ,2 N (24)
i=1

where y. = [Yil, Yi2, .-. .YiN] is a vector containing all N decision data from radar i. Pd' and PY

are denoted as in (20) and (21).

"* Decision fusion rules of Maximum ratio combiner (MRC) and equal gain combiner (EGC)

have the identical format as the single hop case because for both of them, the decision fusion

only depends on the last hop.

5 Simulation Results

In this section, we simulate the performance of the decision fusion rules derived for multi-target

radar sensor networks. For ease of SCR calculation, we assume that all the target RCSs have unit

power, i.e, E[a•2] = 1. Binary decisions are made at the local radar sensors and the relay radars.

The target RCS are generated using the Rayleigh model.

For multi-target, single-hop radar sensor network and multi-target, multi-hop radar sensor

network, we are interested to compare the four decision fusion rules:

"* Optimal LR-based rule

"* LR-based rule with target RCS statistics only

"* MRC rule

"* EGC rule

In all simulations, we assume the constant false alarm rate Pf - 0.01 (for multi-hop case,

Pf - 0.01 is the one at the first hop). Under hypothesis H0 when a target is detected as absent,
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Pf _ Q(xL). We then know the detection threshold Xt = Q(Pf)-lo. When a target is detected,

i.e., hypothesis H 1 , the probability of detection Pd= Q(xtj i)"
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Figure 5: Single hop

Fig.5 gives the probability of miss detection vs. the SCR for multi-target, single-hop radar

sensor network. There are total two stationary targets, three radar sensors in the field. The

optimal LR- based fusion rule provides the most powerful detection performance but it requires

complete target RCS knowledge. The LR-based rule with target RCS statistics approaches the

optimal LR-based rule in low SCR and have about 1dB loss in higher SCR. MRC and EGG have

similar performance. Both are little worse than the LR-based rule with target RCS statistics.

Fig.6 and Fig.7 are the performance for multi-target, multi-hop radar sensor networks. Fig.6

shows the probability of miss detection when each of the three radar sensors reaches the fusion

center in two hops. Fig.7 shows the performance when the three radar sensors reach the fusion

center in unequal hops. In our simulation, we assume that one radar sensor reaches the fusion
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Figure 6: Multi-hop, equal hops

center in two hops while the others in single hop. As expected, the probability of detection for the

single-hop case outperforms the one for multi-hop.

6 Conclusions

In this paper, we presented the MIMO decision fusion rules for multi-target, multi-hop radar sensor

networks under the assumption that the target RCS is Rayleigh model and clutter echoes follow

Gaussian. We derived the optimum LR-based fusion rule and a sub-optimal LR-based fusion rule

with the target RCS statistics only. Simulation results show that the MIMO fusion rules approach

the optimal-LR and outperforms MRC and EGG at high signal to clutter ratio (SCR).

In many cases, two or more local radars may share a common relay node on their way to the

fusion center. Under this circumstances, the independent assumption made toward the target RGS

may not be held. It is actually a very interesting space correlation issue. As the radar observations

17



010 _0 _.__._._.__._._.__._._.__._._.__._._.__._._._ I ... .__.__ ._._.__ ._..1 0 . . . . . . . . . ... . . . . . . . ... . . . . . . . . . . . . . . . . . .. . . . .
S.. . . . . . . .... . . . . . . . .... . . . . . . . . . . . . . . . .. . L

. .. . . . . . '.. . ... . . . . ".. . . ... . . . '.. . . . .. . •....... ......... M R C
S.. . . . . . . . .:.. . . . . . . . . :... . . . . . . . ..:. . . . . . . .. - - . . G

S10--i! ! ! !: ! ! ! ! ••

10-

1c_ 10--3 ... . . . . . . ..'7 77

.... ... ......

. .. . . . . . •.. . . .. . . . . . . . .. . . . . . .• . . . . . . . . . I . . . . . . . .. . . . . . . ..S. . . . . . . . . ..".. . . . . . . . . .. . .. . . . . . .. . . • . . . . . . . . . . . . . . . . . . .. . . . . . . . . .

S. . . . . . . . . :... . . . . . . . ..:. . . . . . . . . . :. . ... . . -A . . . . . . . . . :. . . . . . . . . .

0 2 4 6 8 10.12

Signal to Clutter Ratio in dB

Figure 7: Multi-hop, unequal hops

always demonstrate time correlation, further research will be focused on this space-time correlation

of radar sensor networks.
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Abstract

Interferences due to the hostile environment and the Multi-User Access are critical

factors affecting performance of the Wireless Sensor Networks. There is clearly a need

of a system that can survive from the severe interference. In this paper, we designed a

hybrid Frequency Hopping/Time Hopping-Pulse Position Modulated (FH/TH-PPM) UWB

system for Wireless Sensor Networks to confront the hostile environment. FH and TH are

both used to get as much diversity gain as possible. An exact analysis is also derived for

precisely calculating the bit error rates for both Additive White Gaussian Noise channel

and path-loss channel in the presense of multitone/pulse (tone in frequency domain and

pulse in time domain) interference and Multi-User Interference.

Index Terms Time Hopping, Frequency Hoppoing, PPM, Wireless sensor networks,

UWB, BER



1 Introduction

Wireless sensor networks are becoming more popular for an ever increasing range of applications

with improvements in device size, power control, communications and computing technology.

Since 2002 there has been great increasing popularity of commercial applications based on

Ultra WideBand. This in turn has ignited interest in the use of this technology for sensor

networks. Actually, UWB systems have potentially low complexity and low cost; have a very

good time domain resolution, which facilitates location and tracking applications. So, UWB

wireless sensor networks are promising.

One of the most important applications of WSN is in battle field, which means there

exist hostile interferences. Frequency Hopping (FH) technology offers an improvement in

performance when the communication systems is attacked by hostile interference and reduce

the ability of a hostile observer to receive and demodulate the communication signal. This

kind of inherent property finds it a potential position in the UWB sensor networks. Based on

the UWB definition released by the FCC (FCC, 2002) that a signal is UWB if its bandwidth

exceeds 500 MHz, the overall 7.5 GHz bandwidth, that is, frequencies in the range 3.1 GHz

to 10.6 GHz as based on the FCC ruling, can be split into smaller frequency bands of at least

500 MHz each. This character inspired us to design a hybrid FH/TH-PPM UWB system.

Sensor Network communication systems have to be multi-user accessible, which means

different users/sensor nodes are allowed to share the same physical medium for transmitting

and receiving different data flows. In TH-UWB, the spectrum of the impulse radio signal is

usually shaped by encoding data symbols using TH sequences, which are typically described

as pseudorandom PN codes. These smae sequences can also serve as users' signatures and

ensure access to the medium to multiple users. Therefore, this so called Time Hoppping

Multiple Access (THMA) technology will be a reliable choice in this case. However, in a

realistic scenario where systems cannot achieve ideal synchronization, multi-user interference

2



(MUI) will be another crucial factor besides the previous mentioned hostile interfence to affect

the system performance. Clearly, the simple Signal-to-Noise-Ratio (SNR) is less than enough

to give a comprehensive performance evaluation for sensor networks. Therefore, Signal-to-

Interference-plus-Noise-Ratio (SINR) should be analyzed instead.

Several efforts have been made in the recent past for evaluating the effect of MUI on symbol

error rate with single-user reception in an AWGN channel [7, 6]. However, hostile jammer

are considered in none of them, which would be challenged in this paper. For example, a TH-

UWB sensor network, which is set up in a hostile environment, it is feasible for the enemies to

estimate the shape of a pulse. Therefore, a repeated-imitated-pulses intruder will be sent out

to degrade the performance of the network. The main contribution of this paper, we put the

hositle intereference along with the MUI into consideration, and through the precise analysis

a closed-form performance analysis expression can be got.

The rest of this paper is organized as follows. The system models, including the transmis-

sion, channel and receiver, will be introduced in Section 2. The MUI and hostile interference

will be studied in Section 3 and Section 4 respectively, and the SINR and closed-form BER

will be derived as well. Numerical results and comparisons will be present in Section 5; and

conclusions are made in Section 6.

2 System Models

In the proposed system, there are NF non-overlapping FH bands, each with bandwidth Bh

where Bh is the bandwidth required to transmit a TH-PPM signal in the absence of FH. Let

sk(t) denotes the k-th user's signal at time t in this FH/TH-PPM UWB system with totally

N, users, and it takes the form

S ~ W;3 c"(k)p[t - jTf - t (k)T0 - d (k)J])

3



where p(t)is a chip waveform, which can take arbitrary time-limited pulse shapes proposed

specifically for UWB communication systems, and is normalized to satisfy f+_p 2 (t)dt = 1.

The notations and parameters are:

"* N, is the number of pulses used to transmit a single information bit. Tf is the time

duration of a frame. In general case, N, > 1 pulses carry the information of one bit. The

bit duration Tb should satisfy, Tb > Tf N,.

"* Eb is the energy per information bit. A is the normalized energy in each symbol.

"* cth(k)Tc is the time shift introduced by the TH code. T, is the chip duration. cth(k) is the

j-th coefficient of the TH sequence used by user k; it is pseudo-random with each element

take an integral in the range [0, Nh - 1], where Nh is the number of hops. T, <5 Tf/Nh

should be satisfied.

"* The dj (k)J term represents the time shift introduced by PPM modulation. In our system,

2PPM is only considered. Therefore, dj (k) represents the j-th binary data bit (0 or 1)

transmitted by the k-th user; 5 is the PPM shift.

"* cýh(k) = V(-2)cos(27rfkj) is the k-th user's spreading code during j-th frame.

Notice that each symbol chooses one of the NF sub-bands to transmit the signal, however, in

each sub-band, the transmission is TH-2PPM.

In WSN, in order to save energy, sensor nodes choose to be idle for most of the time. The

number of nodes who are actually in the status of communication is unknown. However, the

total number of sensor nodes in the network and the access rate A, i.e., the rate that a node

in the communication status, for each node are easy to know. Therefore, the users of the

communication system, NT, is a Binomial random variable. Since the total number of nodes,

Nu, is very large, we can approximate the Binomial distribution to a Gaussian random variable

4



with the mean NuA and variance Nu)\(1 - A), as

fN(n 1 - _(n)NuguX) 2 /2Nu,\(l-\) (2)fN.(nV)-- 7/2NuA(1 - X))

For the N1 users, they randomly choose one of the sub-bands to transmit the signal

according to ch (k) symbol by symbol. It is also a Binomial random variable with the coefficient

lINF. To simplify the problem, we assume that the users are distributed optimally, so the

number of users share the same channel, N,, should be expressed as

Nu = NT/NF. (3)

Assume over one Tf, Nu users' signals are simultaneously transmitted over a channel with

L, paths [2], the composite waveform at the output of the receiver antenna maybe written as

N. Lc

r (t) a" s(k (t) - Tk)) + n(t) +±I(t) (4)
k=1 1=1

where n(t) is the additive Gaussian Noise withe two-sided power spectral density N0/2, 1(t) is

the hostile jammer interference, a(k) and (/k) are the attenuation and the delay affecting replica

of the k-th user's signal traveling through the l-th path. In writing ( 4), we have implicitly

assumed a static channel, meaning the a(k) and -rk) are either fixed or vary so slowly that

they are practically constant over several bits.

Consider s(1) (t) to be the desired user, all the other N. - 1 users signals are interference

signals. We make assumptions

"* The reference transmitter and receiver of a reference link are perfectly synchronized under

the coherent detection hypothesis;

"* A dominant path exists that conveys the major part of the desired user's energy [3];

the decision statistic over the 1-st user's j-th symbol is obtained as

(3) r(t)v(t --Tri) -- JT - cj()T,)dt, (5)z =J jTf

5



where v(t) = p(t) - p(t - 3) is the correlation template waveform.

Afterwards, a simple hard decision of the information bit based on zj, j = 0, 1,... , N8 - 1

will be made by majority law.

3 Multi-User Interference Analysis

In this section, we will first focus on the analysis of MUI with the absence of hostile jammer

interference. We assume there is no inter-channel-interference. Therefore, the received signal

of 1-st user's j-th symbol can be expressed as::

ri(t) = ril1)(t) +i j,mui(t) +- n(t) (6)

where rj,mui(t) is the MUI contribution at the receiver input. If the users are many and have

comparable powers, we can approximate the MUI as a white Gaussian process by the central

limit theorem [5] and, as such, it can be lumped into the additive Gaussian Noise,

Wtot(t) = rj,mui(t) + n(t) (7)

and wtot(t) is still a white Gaussian process. Correspondingly, the minimum error probability

can be achieved by computing ( 5).

However, we still need to evaluate the energy of the MUI. Since the system is asynchronous,

we need to consider all cases where a pulse originated by any of the transmitters but TX1, is

detected by the receiver. First of all we need to analyze the noise provoked by the presence of

one alien pulse at the output of the receiver by using the similar method as in[l].

mui(k)(r(k)) k) E•) jp(t- T(k))vtdt (8)

where, E•) =- (k) (Eb/N,), and here we suppose Q(k) 1= Vk.

Since _r(k) is uniformly distributed over [0, Tf), however, the region the MUI noise can affect

to the desired user , is only at [-Tp, T,], with T, = 2Tp[1]. Hence,

2 p((t j-T(k))v(t)dt d-(k) (9)
amus TY ]-V R 0(9)

6



and cumulate all the N, - 1 interference sources, the total MUI energy is

2n= u 1 Nu WE(k) p(t -_T(k))v(t)dt) d(k) (10)
O'mlui - E -RX vtd dT(0

Tfk=2 (JT JC

Since all the delays, r, are identically distributed, and under the hypothesis of perfect power

control, e.g., E(k) = ERx Vk,
0-2 EXN,(X 

f~ 
t

"mui - 1:(t -A r)v(t)dt> (11)

Tf k=2

Define o-2 as

2

0'2 f~ kp(t -r)v(t)dt)d

I'f (j'cP(t - T) (p(t) - p(t - J)) dt) 2dT02

f j (Ro(T) -Ro(r±j))2 d0• (12)
TP

and (10) becomes

2 ERX(Y_ 1)U2
'm Tf (NI M (13)

Therefore, the SIRIui over one symbol can be expressed as:

Tf (14)

Let SNR&,f denotes the equivalent signal to noise and MUI ratio over one symbol, it can

be written as

SNRref (SNR- 1 + SIR±•,i) (15)

where SNRn are the signal to noise ratio over one symbol.

Hence,

SNRref = (ERX) Tf(ai~))

___ __ ( •__b)(6
Tf No(16)N'Tf + (N - 1)02 (-A

7



where Eb/Nois the system SNR.

We can also get the equivalent variance of Wtot (n),

(Ng - 1)U2M Eb

N - No NTf (17)

4 Performance Analysis with Multitone/pulse Interference

In this section, the SIR for the hostile interference part is obtained. As previously mentioned,

in a hostile environment, which is a common case for sensor networks, it is feasible for an

enemy to estimate/detect the pulse waveform, furthermore, send the imitational waveform to

interfere the communication system. However, it is not economy or efficient for the interference

to cover all the frequency bandwidth. So, what we study here is a multitone/pulse (tone in

frequency domain; and pulse in time domain) interference, which implies that the jamming

signal consists of one or more tones/sub-bands transmitted within the total bandwidth; and it

has the same pulse shaper as the transmitted 2-PPM signal does.

We make the following assumptions:

"* The multitone/pulse interference has a total power Pj, which is transmitted in a total of

q equal power interfering tones spread randomly over the spread spectrum bandwidth;

"* The time duration for the interference pulse is the same as the time duration of the

transmitted signal pulse p(t), which is denoted as Tp. To simplify the problem, we

suppose T, = 2Tp and 5 = Tp. The hop period of the interference is also Tp, and each

hop is independent.

"* The multitone/pulse interference can catch the signal pulse with the perfect timing. We

consider the scenario that there is at most one interference per FH sub-band. Hence, in

one hop, the probability that a FH band contains an interference tone/pulse is q/NF.

Observe the transmitted signal as in (1), the signal hops both in the frequency domain

8



and in the time domain symbol by symbol. Therefore, our analysis will first focus on one

symbol.

10- I10

8 - 8

6- 6

12 , 12 I

I = 4

slo tilO1O1

0- 0

-2 -2

-4 -- 4-

0 20 40 60 0 20 40 60
time, d=O time, d=I

Figure 1: An example of the waveform of a 2-PPM signal.

For one symbol, no matter what c3h(k) and Ceh(k) are, it is a 2-PPM signal shown as in

Fig 1. The left one is the waveform when dj(k) = 0, and the right one is the waveform when

dj(k) = 1. We partition the symbol duration as two time slots, hence, for the multitone/pulse

,interference, there are two hops. And because in each hop, it is independently distributed,

there should be totally four cases with regard to the jammer interference for each symbol:

1. Casel. There is no jammer interference in either of two slots, and the probability of

casel is

P{casel} = (1 - J-) - (1 -- L). (18)

2. Case2. There is jammer interference in each slot, and the probability of case2 is

P{case2} = --- q (19)
NF NF

9



3. Case3. There is one and only one jammer interference pulse, and it is at the same slot

as the signal pulse. The probability of case3 is

P {case3} = (1 - 2) q (20)N NF"

4. Case4. There is one and only one jammer interference pulse, and it is not at the same

slot as the signal pulse. The probability of case4 is

P{case4} = (1 - qF).N. (21)

The received signal of the j-th symbol of 1-st user can be expressed as:

W(t) = W(t) + Ijammer (t) + Wt.(t); (22)

where r (t) and ljammer(t) are the jammer interference contributions at the receiver input,

and wtot(t) accounts for both the thermal and MUI noise contributions, and is still a white

Gaussian process as proved in Section 3. Hence, a maximum a posteriori (MAP) approach

can be adopted here to get the minimum error probability. For different cases of the jammer

interference, the detection boundaries are shown in Fig. 2.

Hence, we can get the SINRjammer straightforwardly.

"* For casel and case2,

SINR3ammerlcasel,2 ER" (23)

"* For case 3,

(VEv--± + V/- )2
SINRjammerlcase 3 = N. (24)

"* For case 4,

(EIERX- FL)2
S1NRjammerIcase 4  N o (25)

10



casel case2

f(rIH ) f(rI 1) pf(rIH ) f(rI 1)

7=0 _= z0

S ERX sqrt(P,/q) E.x+(Pjq)
1 2

case3 case4

f(rIH f(rIH )f(rI f(rI 1)

0 E212o E•+t(Pjq)
1 2  

(Pj/q)
1
/ E

1
RX

Figure 2: The MAP detection rule for all the cases.

For 2-PPM signal the error probability is [1],

Pr = Q( V/SNRp,). (26)

Apply (17) and (23) to (25) into (26), we can derive,

"* For casel and case2,

prsl1,2= Q( (27)

"* For case 3,

pr~jc3 Q(• No' _ •• ) (28)

"• For case 4,

Prll4 =Q( No' (29)

11



Removing the conditioning on cases, we get

+ N F- q + q(2)- ,
+ NFJ k N FJ((N

+ Q( ()))o. (30)

Considering only N, is a random variable, we should take ( 2) and ( 3) into (30),

Pr, = 1 jNu prse_(n._N•A)2/2NuA(I_-)dnu (31)
NF 2wrNu-A(1 - \) 1UA

After we got the symbol error rate Pr8 , it is easy for us to obtain the bit error rate Prb by

majority law.
Ns

Prb iiE C~kprk(l - Pr,)Ns-k (32)
k=rFs]

where [1] is the ceiling operation, and Ckgs is an N8 -choose-k Binomial coefficient, i.e., CN8 =

N,!

5 Numerical Results and Comparisons

The parameters of the example UWB systems are listed in Table 1.

e The discussion on N.;

We fix NF = 20, q = 8, N, = 10 and the energy of the signal and jammer interference

ratio Eb/Pj = 5dB, and compare the Symbol Error Rate (SER) and Bit Error Rate

(BER) among N. = 1, 3, 5, 7. The results are shown in Figure. 3 and Figure. 4 respec-

tively. For SER, because, the more symbols used to transmit one bit, the energy for

each symbol is less, SER is increasing when the N, increases. However, BER is more

12



Table 1: Parameters of the example FH/TH-PPM UWB system

Parameter Notation 2hdaorder mono-cycle

shaping factor for the pulse C 0.25ns

time shift introduced by PPM 3 0.5ns

pulse duration Tp 0.5ns

frame duration Tf 8ns

chip duration Ti lns

number of hops Nh 6

meaningful here, and obviously, the more symbols we used to transmit one information

bit, the better performance we can achieve. The curves drop quickly from SNR = OdB

to 15dB, however, after 15dB, become flat, which caused by the jammer interference.

10.

NF 5010 85 N 20 2/ 5 30

Figure 3: The average SER for different N3 .

* The discussion on Eb/Pj;

We set Np --- 20, N6 --- 3, q --- 8, and N• = 10, and compare the SER and BER among

13
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Figure 4: The average BER for differnN.

Eb/PJ = 0, 5,1l0dB. Figure. 5 and Figure 6 show the results. For both SER and BER,

larger Eb/Pj can guarantee better performance. From Eb/Pj = 5dB to Eb/Pj = l0dB,

the performance gain is very limited, the reason of which is when Eb/PJ is higher than

somebetter threshold, the jammer interference is too weak to give any impact to the

system.

10

S.. ... ... ... : ... ... ... ... : ............... . . . . . .:. . . . J j 5 B

.0.

S10-

0-0 5 10 16 20 25 30

Figure 5: The average SER for different Eb/Pj.
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Figure 6: The average BER for different Eb/Pj.

* The discussion on q;

NF, Ns, Nu and Eb/Pj are fixed at 20, 5, 10 and 5dB respectively.We try to evaluate

the performance for q = 2, 8, 18. At the first glance, larger q may be thought to yield

worse performance, because large q means the probability that a jammer interference

bumps the information signal is higher. However, we need to notice, high q also means

the energy of the jammer interference for each sub-band is less, because the total jammer

interference power is fixed. We can get the same conclusion in the Figure. 7 and Figure. 8.

The worst and best performances are get at q = 2 and q = 8 respectively.

* The discussion on NF;

We evaluate the performance for NF = 1, 5, 10, 20 when N8 = 1, and the number of users

who are at communication status is 100. We need to evaluate how partitioning NF can

decrease the MUT, therefore, we set it as a jammer interference free channel. Obviously,

Figure. 9 shows that we can get better performance when NF is larger. Considering,

more sub-bands partitioned means more cost, the NE should be set at an appropriate

value as long as the Quality of Sevice (Qos) is satisfying.
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Figure 7: The average SER for different q.

* The discussion onN;

We set NF -- 20, q = 8, N = 5 and Eb/PJ = 5dB. N. is equal to 5,10,15, 20 respectively

to get different performance, which are shown in Figure. 10 and Figure. 11. At high SNR,

the performance is degraded quickly when Nu becomes larger. That is because the MUI

is related with Eb under the assumption that each user has comparable power.

* The discussion on A•;

We proved in Section 2 that the Nu is approximately a Gaussian RV.With known Nu, the

number of sensor nodes in the WSN, but unkonwn N•, the number of users that would

share the same sub-band, we need to calculate the SER as in (31). We set Nu -- 10,000,

NF is set as 20 and we assume the users are optimally distributed. For different access

rate, A• = 0.01 and A = 0.02, the performances are shown in Figure 12 and Figure. 13,

we can see though the Nu are the same, the difference in A• would yield totally different

performance.
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Figure 8: The average BER for different q.

6 Conclusions

In this paper, we make an performance analysis with the presence of the multi-tone/pulse jam-

mer interference and multi-user interference based on the hybrid FH/TH-PPM-UWB system.

We get an accurate expressions of SER and BER with the presence of MUI and hostile j ammer

interference. We evaluate the performances for different number of symbols to carrry one in-

formation bit N8 ; the signal to j ammer interference ratio Eb/PJ; the number of FR sub-bands

Np; the number of tones q of the jammer interference; the number of users sharing the same

sub-band N•,; and the total number of users in the wireless sensor networks Nu, and the access

rate for each sensor nodes A, in terms of BER and SER so as to show how these parameters

affect to the FH/TH-PPM UWB system.
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Abstract

In this paper, we address a fundamental problem in Wireless Sensor Networks, how many hops

does it take for a packet to be relayed for a given distance? For a deterministic topology, this question

reduces to a simple geometry problem. However, a statistical study is needed for randomly deployed

WSNs. We propose a Maximum Likelihood decision based on the joint pdf of (H, n), which is also

derived in this paper. Since the solution is not closed-form, we also propose an attenuated Gaussian

approximation for the joint pdf. We show that the approximation visibly simplifies the decision process

and the error analysis. The latency and energy consumption estimation are also included as application

examples.

I. INTRODUCTION

The recent advances in MEMS, embedded systems and wireless communications enable the

realization and deployment of wireless sensor networks (WSN), which consist of a large number

of densely deployed and self-organized sensor nodes. The potential applications of WSN, such

as environment monitor, often emphasize the importance of location information. Accordingly

geographic routing [1] was proposed to handle such requirement. Most likely, a packet is not

routed to a specific node, but a given location. An interesting question arises as "how many



hops does it take to reach a given location?" The prediction of the number of hops is important

not only in itself but also in helping estimating the latency and energy cost, which are both

important to the viability of WSN.

The question could become very simple if the sensor nodes are manually placed. For example,

suppose sensor nodes are place in a square grid with separation of d. Obviously, the connectivity

depends on the comparison of d and the transmission range R. Suppose d < R < V2d, this is

simply a 4-connectivity network. For any node, the possible distance of its first-hop neighbors

is {d}, the possible distances of its second-hop neighbors are {fV2d, 2d} and so on. Generally,

the possible distances of its nth-hop neighbors are {f (n - i) 2 + i2d, i = 0, 1, 2, [n/2]

where [n/2] is the smallest integer not less than n/2. If we compare the given distance with

these distances, the required number of hops can be easily found. For some given distance, there

could be two solutions, such as (8 - 1)2 + 12 = (10 - 5)2 + (10 - 5)2 = 50, then we have to

select the number of hops with higher probability. For geographic approach, such conflicts can

be easily solved with loss of accuracy. Thus, geographic approach is more efficient and accurate

than statistical approach on deterministic topology.

40 ;

30 a 0 a

20 1 ~ C a 0 V

10 V C A 0 0 V

0 , 0 + 0 , o

-10- C 6 0 0 a

-20 - V

-30 V o -

-40 -30 -20 -10 0 10 20 30 40

Fig. 1. The nodes in a square grid placement. Only nodes within 4 hops are shown.

However, if sensor nodes are deployed in a random fashion, which is the case for most

potential application, the answer is beyond the reach of simple geometry. The stochastic nature

of the random deployment calls for a statistical study. A natural and obvious estimation would

be dividing the distance by the average inter-node distance (i.e., the average single-hop distance).

2



However, such estimation may be unable to provide the required accuracy. A probabilistic study

is needed here, that is, finding f(H Id), where H is the number of hops. Although the question

raised here is not directly addressed before, a mirror problem, finding f(dlh), has been well

studied. In [2], Hou and Li studied the 2-D Poisson distribution to find a optimal transmission

range. They found that the hop-distance distribution is determined not only by node density

and transmission range but also by the routing strategy. They showed results for three routing

strategies, Most Forward with Fixed Radius, Nearest with Forward Progress, and Most Forward

with Variable Radius. Cheng and Robertazzi in [3] studied the one-dimension Poisson point and

found the pdf of ri as

frn (ri) = -e -(R-r) 
(1)

where R is the transmission range, A is the node density, ri is the distance from the source to

a ith-hop point and ri is related to re, by

re, + ri = R. (2)

The pdf of re, is also obtained,

f(r) = 1 - e(R-(3)

Obviously, the distribution of ri depends on previous rj, j < i. They also pointed out the 2-D

Poisson point distribution is analogous to the 1 -D case, replacing the length of the segment by

the area of the range.

Vural and Ekici reexamined the study under the sensor networks circumstances in [4], and gave

the mean and variance of multi-hop distance. They also proposed to approximate the multi-hop

distance using Gaussian.

The rest of this paper is organized as follows. We provide some preliminaries on skewness

and kurtosis in Sectionsect:Preliminaries. The number of hops predication problem is addressed

and solved in Section III. Since this problem has no closed-form solution, we propose an

attenuated Gaussian approximation and show how to simplify the error analysis in Section IV.

An application example is shown in Section V. Section VI concludes this paper.
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II. PRELIMINARIES :SKEWNESS AND KURTOSIS

In this section, we provide some preliminaries on statistical methods [5]. Skewness is a measure

of symmetry, or more precisely, the lack of symmetry. A distribution, or sample set, is symmetric

if it looks the same to the left and right of the center point.

Definition 1: [5] For a given sample set X,

m3 = E(X- X)3 /n, (4)

M2 = E(X _)2/n, (5)

where X is the sample mean of X, and n is the size of X. Then a sample estimate of skewness

coefficient is given by
m3 (6)91= -. (6

M2

Skewness is zero for a symmetric distribution. Positive skewness indicates right skewness and

negative indicates left.

Kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution.

Definition 2: [5] A sample estimate of kurtosis for a sample set X is given by

92 = m4/m2 - 3, (7)

where m4 = E(X - X) 4/n is the fourth-order moment of X about its mean.

Skewness and kurtosis is useful in determining whether a sample set is normal. Note that the

skewness and kurtosis of a normal distribution are both zero; significant skewness and kurtosis

clearly indicate that data are not normal.

III. THE NUMBER OF HOPS PREDICTION

A. Problem Formulation

We make the following assumptions.

* The nodes are deployed at random on a plan, that is, the node distribution follows 2D

Poisson random process. Thus, the probability of "there is no node in a given area A" is

given by [6]

Pr(No nodes in A) = e-a, (8)

where A is the density of nodes.
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"• The distance from the source to the destination d is known, which is common in geographic

routing.

"• Neither of the source and destination is close to the border. This assumption holds true for

most of the nodes if the network size is large enough.

The problem of interest is to find the number of hops, denoted H needed to reach a specific

destination r from a given source node. We can make a Maximum Likelihood (ML) decision,

H = argf (HIr),H = 1, 2,3,.... (9)
max

Considering

f(HIr) - f(H,r) (10)
f(r)

the decision rule can be translated into

H = argf(H, r), (11)
max

where f(H, r) is also called objective function. In the next subsection, we are concerned with

deriving p(H, r).

90

00

27

Fig. 2. Poisson node.distributio
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Fig. 2.. Poiso nod .....t"ib"u...oon.

5



B. Derivation of the Joint PDF p(H, r)

Let r denote the distance from the source to a node, the cdf of d is

Fr(r) = 1 - eC-Ar 2. (12)

And the pdf of d is

fr(r) = )27wre-V 2. (13)

When H = 1, the joint cdf of (H, rl)

p(H 1, r) = 1 Arr,(14)

ri > R

and the joint pdf is

\7irr 
2 (15

f (H = ,l A27rrae- 1T r, _ R (5

r1 >R

Note that the conditional pdf of H = 1 given r < R is unity for r < R, which is intuitively

correct but simple, we are more interested in multi-hop distance. In the following, r > R is

assumed so that H > 1. The two-hop case is shown in Fig. 3, a second-hop node must satisfy

Fig. 3. The second-hop coverage.
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R < r 2 < 2R. Furthermore, the farthest first-hop node is not necessarily at the maximum

transmission range, which means, there is a gap re, between R and rl, i.e.,

r,1 + rl = R. (16)

Therefore, the joint pdf of (H 1, rei) is

fA27r(R - rei)e-Ar(R-rq) 2 re1 < Rf(H -- 1, re) --= (17)

10 
O.W

And accordingly, the joint cdf of (H 2 , r 2) is

p(H = 1,r 2 rI) =

6- ~ ~ \7[Rr)-r+l2 r R < r < 2R
w(18)

0 O.W.

Generally, for H = n (shown in Fig.4), we have

p(Hn, rIlri, r 2 ,... , rn - 1) =
-1 n-1 n-I

{A7r[(R+ R )-2 ri)'] -A[(R+ re)2 ri•

R < r < nR (19)

O.W

and

p(Hn,rn) =

(n-1)R(n-2)R R

J ... fP(HnrnIrir 2,.",rn-1)
R R 0

f (Hn-1, rn-1 Irl, r2,.. , rn - 2) ...

f (HI, rl)dri ... .drn-2dr•-_ (20)

Theoretically, we can take derivative of (20) with respect to r to obtain the objective function,

use (11) to decide the most likely H given r and give the probability of error for such a decision.

However, (20) is awkward to evaluate and the computational cost could limit the applicability

of such a decision scheme.
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Fig. 4. The ith-hop coverage.

TABLE I

STATISTICS OF f(H = n, rn), n > 3

Number of Hops Mean Std Skewness Kurtosis

1 19.991 7.0651 -0.57471 -0.58389

2 45.132 7.8365 -0.16958 -1.0763

3 72.01 8.2129 -0.10761 -1.0332

4 99.45 8.391 -0.07938 -0.97857

5 127.14 8.5323 -0.06445 -0.93104

6 154.96 8.6147 -0.05341 -0.9004

7 182.68 8.573 -0.07738 -0.91687

IV. ATTENUATED GAUSSIAN APPROXIMATION

Since (20) is awkward to evaluate even using numerical methods, we use histograms collected

from Monte Carlo simulations as substitute to the joint pdf. All the simulation data are collected

from such a scenario that N sensor nodes were uniformly distributed in a circular region of radius

of 300 meters. For convenience, polar coordinates were used. The source node was placed at

(0, 0). The transmission range was set as R meters. For each setting of (N, R), we ran 300

simulations, in each of which all nodes are re-deployed at random. And the node density is
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given by
N (21)

A 7rR2

0.07

0.06-
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0 6'0 8 .....1. . ..............
0 20 40 60 80 100 120 140 160 180 200

Fig. 5. Histograms of hop-distance joint distribution. (R = 30, A = 6.37(10)-3)

The histograms of f(H, r) are plotted in Fig. 5, which clearly shows that the joint distribution

of (H, r) approach the normal when H increases. Table I lists the first-, second-, third- and fourth-

order statistics of f(H, r). The skewness and kurtosis clearly satisfy the Gaussianity condition

within tolerance of error. Thus, the objective function can be approximated by

f(H= n, r,) = anN/(m a,ou)
a ,n _ n ý2

= i2a (22)

where a is the equivalent attenuation base, m, and un are the mean and standard deviation(std),

respectively. The specific values of these parameters can be evaluated from (20) numerically or

estimated from simulations. Observe Table I, for large n, the joint pdf of (H, r) has following

properties,

1) arn ; an-,, which means the neighboring joint pdf's have similar spread.

2) mn - Tn-I m n+l - Mn, which means the joint pdf's are evenly spaced.
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3) 3 < Mý-mni < 5, which means the overlap between the neighboring joint pdf's is small
OUn

but not negligible. (As a rule of thumbs, Q(3) is considered relatively small and Q(5) is

regarded negligible.)

4) m-M-2 >» 5, which means the overlap between the non-neighboring joint pdf's isO'rn

negligible.

5) a < 1. For large density A, a --- 1. Along with Property 1, this tell us that the neighboring

joint pdf's have nearly identical shape.

As shown in the following discussion, these properties largely simplify the decision rule and

the error analysis. Another interesting observation, besides these properties, is that the following

equations do not stand true.

mn = nm1  (23)

mn = nR (24)

Mn = (n - 1)R + R/2 (25)

Although these equations sound plausible, they all give visible errors. The aforementioned

estimator [r/R] + 1 for H, though widely used, is not good in the new light shed by this

study. However, Property 2 does tell us the increment for mn is constant, if denoted by A,

Mn = M1 + (n - 1)A (26)

We showed in [7] that mi = 2/3R, irrelevant to the node density. Although A is a function of

A and R, A is often regarded constant for a specific application and R varies in a short range,

thus, we can safely expect A = aR, where a is a constant, for example, a = 0.9 for the data in

Table I. In summary, the following empirical equation stands for most application for WSN.

Mn = R(32 + (n - 1)a) (27)

The above results about the constant increment of mean hop-distance is used in Section V-B for

energy consumption estimation.

A. Decision Boundaries

Following (11), we decide H given r using the following rule.

H = argmaxf (H, r) (28)
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n-1 nr,

dn.1 dn r

Fig. 6. Gaussian Approximation.

Observe the f(Hn, r,) in Fig. 6, the decision is needed only between neighboring H, that is,
n

f(H =n,r) ! f(H=n±1,r). (29)
n+1

This is because, for a specific value of r, there are only two H, with dominating f (H = n+ 1, r),

compared to which f (H = n + 1, r) for other values of Hn is negligible. Substitute (22) into

(29), we obtain the decision boundary d, between the regions H = n and H n + 1.

d- B + V 2 + AC)
A

2 2B = o'n-.I-1  - Mn+lO2

CO-n+1 _ -rnm2 +1 r + 20-nOn2+ 1 n•a (30)

Using Property 1,
2 + 2 -26 2 Ina

dn = ?'lnl -- n -n-312(iTn + - rn) (31)

For large density A, Property 5 is applicable, (30) simplifies to

2 2dn= nmn+l + 0-n+lmn (32)

11 n+1



Applying Property 1 to (32),
m, + m'+i

dn (33)2

If we use the empirical equation (27),

dn = -R + (n- -)aR (34)

No matter which approximate solution we choose for dn, the decision rule is given by

n+1

r Zdn. (35)
n

In other words,

we decide H = ft if df,- 1 < r < d4, (36)

which is equivalent to

r aR 1n= a/ + 2] +1 (37)

B. Error Performance Analysis

For out decision rule, a decision error occurs when H = n f t. Thus, the probability of error

with a specific r is

p(c,r) = Ef-(n,r). (38)

The total probability of error is obtained by integrating (38) over all possible r.

p(c) = Jp(E, r)dr (39)

According to Property 4, only f(n - 1, r) and f(n + 1, r) could have outstanding value over the

decision region [d,- 1 , dn].

. dn•

P . c) f f(n-1 r) + f (n + 1 )dp(E) Zfn1 )+ r+1,r)dr
n-2dn-1

Ea on -l[Q( dn- 1 - mln-1) _ Q(dn -_ n-1)]

n=2 7n-1 )]n-1
+oen+l[Q(mTn+l -- dn) _Q(mn+l -- dn-1)]

rn+1 O'n+1

(40)
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Note that

dn - m7 n- 1  dn- 1 - rn-1

O'n_1 0'n-1
dn - dn-1

O > 1, (41)

therefore, Q(d-m"-1) is negligible compared to Q(d--m-_1). Similarly, Q(mn+i-d,) is negli-

gible. (40) is approximated by

ý fl 3 d2  " Qdn- 1 - M7  1p(c) a3Q(m3 -d2) o+
0"3 n=30"n-1

+an+lQ(mn+l - df)]
0'n+1

= 2Q(d2 -M2) [Qm 00l
U2  n=3n

+Q(d -m

OUn

(42)

Substituting an appropriate solution of dn into (42) would give us the probability of error within

required accuracy. For example, if we choose (33),

p(E) a 2Q( -- M2±) o.[Q( -a7
o -2-92 ---- °n=3 m2on;- rn-

n---3
S.mn+i -- rn7+Q( Mn+ -M)]

(43)

V. APPLICATION EXAMPLES

A. Latency Estimation

T

Fig. 7. Time model.
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Suppose it takes T7, for a sensor node to receive 1 bit of message and Tt. to transmit.

Considering the transmission range in sensor networks is usually short compared to the light

speed, the propagation time Tp, is negligible. Shown in Fig. 7, given the end-to-end distance r,

we can find the required number of hops H = ft according to (35), thus, a good estimator of

the total latency of a i-bit message is

l[Tt. + (ii - 1)(Tt. + T'.) + Tr] (44)

= l'(Tt. + TI.) (45)

B. Energy Consumption Estimation

The following model is adopted from [8] where perfect power control is assumed. To transmit

I bits over distance d, the sender's radio expends

E (1, d) = {Eeiec + 16f.d 2  d < do (46)
|1 Eýý + l•mpd 4  d > do

and the receiver's radio expends

E,.(l, d) = IE61 cE, (47)

E,,,, is the unit energy consumed by the electronics to process one bit of message, cfa and

rmp are the amplifier factor for free-space and multi-path models, respectively, and do is the

reference distance to determine which model to use. The values of these communication energy

parameters are set as in Table II.

TABLE II

ENERGY CONSUMPTON PARAMETERS

Name Value

do 86.2m

E.Iec 50nJ/bit

EDA 5nJ/bit

efý lOpJ/bit/m
2

Emp O.O013pJ/bit/rn

14



Let s, denote the single-hop distance from the (n - 1)th-hop to the nth-hop. Obviously,

s,, < R. In our experimental setting, R = 30m < do so that the free space model is always

used. This agrees well with most applications, in which multi-hop short-range transmission is

preferred to avoid the exponential increase in energy consumption for long-range transmission.

Naturally, the end-to-end energy consumption for sending I bits over distance r is given by

Etota,(1, r) =Z Et. (1,r) +Ex(1)}
1

- lZ-{Eelec + Cfss + Eeiec}, (48)
1

where ft is the decision result for given r. On the average,

Etota(1, r) = 2ftlEeie + 6fs ZE[sn] (49)

1

rn~

rn-I

S Sn

I
A

rr

n

Fig. 8. The relationship between r,ý, r,•- 1 and s,.
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The relationship between r,, rn- 1 and s,, is depicted in Fig.8.

t = s, cos A
2 +.r2 2

cos A = sn + r n-

2s~r,
s = r,21-r +2tr2 (50)

For large n, rn > s,, and r,,- >» s,, therefore, t - A. According to Property 2, A can be

treated as a constant.

Els4] E[rL1] - E[r ] + 2AE[r.]
E2  2

n-1 - o,, + 2Amn (51)

(V Property 1) R 2Amnu (52)

Substitute (52) into (49),

Etotai(l,r) = 2fIlEeiec + 2efSAy- m, (53)
1

VI. CONCLUSION

To predict the number of hops H needed to reach a given distance r in randomly deployed

sensor networks, we proposed a ML decision based on the joint pdf of (H, n), which was also

derived in this paper. Since the solution is not closed-form, we also proposed an attenuated

Gaussian approximation for the joint pdf. We show that the approximation visibly simplifies the

decision process and the error analysis. The latency and energy consumption estimation are also

included as application examples.
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Abstract

In this paper, we are concerned with the optimal cluster size in Underwater Acoustic networks. Due

to the sparse deployment and channel property, the clustering characteristics of UA is different from that

of aerial sensor networks. We show that the optimal cluster size is also relevant to the working frequency

of the acoustic transmission. Furthermore, we show that assigning working frequency to cluster members

according to their distances to the cluster head could minimize the energy consumption.

I. INTRODUCTION AND MOTIVATION

An UnderWater Acoustic Sensor Network (UW-ASN) can be thought of as an ad hoc network

consisting of sensors linked by an acoustic medium to perform distributed sensing tasks. To

achieve this objective, sensors must self-organize into an autonomous network which can adapt

to the characteristics of the underwater environment. UW-ASNs share many communication

technologies with traditional ad hoc networks and terrestrial wireless sensor networks, but there

are some vital differences such as limited energy and bandwidth constraint [1], thus the protocols

developed for traditional wireless ad hoc networks are not necessarily well suited to the unique

features of WSNs. When a wireless sensor may have to operate for a relatively long duration

on a tiny battery, energy efficiency becomes a major concern.

Another issue in shallow water communications is that due to the limit of bandwidth in

shallow water communications, multi-hop communication could introduce heavy interference



between cluster members, therefore, each sensor in a cluster communicate directly to its cluster

head and intra-cluster communication should be coordinated by the cluster head in order to

maximize the bandwidth usage.

The remainder of this paper is organized as follows.

II. PRELIMINARIES

In this section, we provide some preliminaries needed for further discussion.

A. Underwater Acoustics Fundamentals

Based on the data and formulas in [2], Jurdak, Lopes and Baldi [3] derived the following

model,

SL = TL + 85, (1)

where SL is the source level and TL is the transmission loss. All the quantities in (1) are in

dB re IpPa, where the reference value of 1 ptPa amounts to 0.67 x lO-22 Watts/cmr2. For

cylindrically spread signals, the transmission loss is approximated by [2],

TL = 10 log d + ad x 10-3, (2)

where d is the distance betwen source and receiver in meters, a is the frequency dependent

medium absorption coefficient. Fisher and Simmons [4] measured the medium absobtion in

shallow seawater at temperatures at 4°C and 20'C. The average is obtained in [3],

0.0601 x f0.s552 1 < f < 6

9.7888 x fl'7Sx 10-3 77<f <20
a = (3)

0.3026 x f - 3.7933 20 < f < 35

0.504 x f - 11.2 35 < f < 50.

To guarantee the reception quality, the required threshold of a, denoted by &, might be chosen

larger than d. However, we can generally expect & be a monotonically decreasing function of

frequency f. To emphasize their relationship, & is written as &(f) in the rest of this paper.

The transmitter power Pt required to achieve an intensity It at a reference distance of lm is

expressed as,

Pt = 27r x 1m x H x It, (4)
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where It is related to SL by

It = 10sL/xO x 0.67 x 10-18. (5)

Summing up (1), (2), (4) and (5), we obtain

Pt = CHdlOad,°-3, (6)

where C is a constant equaling 27(0.67)10-9 5. Therefore, to transmit 1 bits over distance d, the

sender's radio expends

ETx(1, d) = lEgiec + lTbPt (7)

and the receiver's radio expends

ERx(1, d) = Eeec, (8)

where Tb the bit duration, Eeiec is the unit energy consumed by the electronics to process one

bit of message.

III. OPTIMAL CLUSTERING

In this section, we make data-centric analysis of energy consumption in UW-ASN.

A. Problem Formulation

Clustering has been widely used in pattern recognition, and we use it to obtain the energy-

efficient organization for UW-ASN. Consider a heterogeneous UW-ASN, in which the low-

capacity sensors serves as cluster members and are randomly distributed, and the high-capacity

sensors serve as cluster heads and are manually positioned. If we obtain the optimal cluster

size, then the required number of high-capacity sensors and their ideal positions can also be

determined. all the sensor are the same and elect some from them to be cluster heads. If we

assume the high-capacity sensors have virtually unlimited energy reserve compared to the low-

capacity ones, only the energy consumption of the low-capacity sensors need to be counted. The

energy cost for each bit of data collected by the ith member of the kth cluster is

EcM(ki) = Eeec + TbPt(ki) (9)

Pt(ki) = CHrkilOarki 0-3 (10)

where rki is the distance from the kth cluster head and its ith member.
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.Considering all c clusters, the overall cost is
C Mk

Etotal = E E EcM(k), (11)
k=1 i=1

where Mk is the number of non-head members in the k cluster.

Taking the expected value of the overall energy cost, we obtain Etotal as the objective function.

Minimizing the overall energy consumption is equivalent to minimizing

J = E[rl0OT ]. (12)

B. Solution for Random Deployment

Suppose the low-capacity sensors are deployed at random, then their locations would follow

the two-dimension Poisson distribution, i.e., the number of nodes NA in area A is given by,

Pr(NA) = (AA)NAe-\A/NA!, (13)

where A is the node density. A useful property of the Poisson process is that if the number of

nodes occurring in the area A is N, then the individual outcomes of N nodes are distributed

independently and uniformly in the area A. For the single-hop cluster, in which all cluster

members can communicate with the cluster head directly, the distance r between any cluster

member to the cluster head has the cdf given by
71-?2

F(r)- = (14)

where R is the cluster size. Thus the pdf of r is

f(r)= . (15)

Suppose the frequency allocation is irrelevant to r, which is the case for most applications in

use, a(f) and r is independent. Substitute (15) into (12),

J = E[rlor]10,. (16)

R

E[rlOr] = Jr1O02dr
0

r r2 2r 2 R
= 0 - InB210 + n3-10)]°

R R2 2R 2 2
- 10"ln(In 10 in2 10 + in3 0---± 10ln3 10
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By setting the derivative of (17) to zero, we obtain

no t = v'/In 10. (18)

IV. CONCLUSION

Although clustering has been well studied for the terrestrial WSN, the unique characteristics

of the underwater acoustic communications call for a new study. Because the path loss is not

only relevant to the distance, but also related to the working frequency, the optimal cluster size

for UW-ASN shows different properties from the terrestrial WSN. Furthermore, we show that

assigning working frequency to cluster members according to their distances to the cluster head

could minimize the energy consumption.
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Abstract--Query processing methods have been studied ex- Existing query processing systems for WSNs, including
tensively in traditional database systems. But few of them can Directed Diffusion [4], TinyDB [16], and Cougar [5], provide
be directly applied into sensor database systems due to the high-level interfaces that allow users to collect and process
characteristics of sensor networks: decentralized nature of sensor such continuous streams. Note that they are especially at-
networks, limited computational power, imperfect information
recorded, and energy scarcity of individual sensor nodes. In tractive as ways to efficiently implement monitoring applica-
this paper, we propose a quality-guaranteed and energy-efficient tions without forcing users to write complex, low-level code
algorithm (QGEE) for sensor database systems. We employ an for managing multihop network topologies or for acquiring
in-network query processing method to task sensor networks samples from sensor nodes. TinyDB, Directed Diffusion and
through declarative queries. Given a query, our QGEE will s am e
adaptively form an optimal query plan in terms of energy Cougar are relatively mature research prototypes that give
efficiency and query quality. The goal of our approach is to some ideas on how future sensor network query processing
reduce interference coming from measurements with extreme systems will function. However, these future systems will be
errors and to minimize energy consumption by providing service significantly more sophisticated than any of today's prototypes.
that is considerably necessary and sufficient for the requirement To understand these requirements, queries may be classified
of applications. Moreover, we employ probabilistic method to
formulate the distribution of imperfect information sources in along five dimensions- scope, volume, complexity, timeliness
terms of probability distribution function (PDF), and acquire and quality-those dictate the design of networking mechanisms
probabilistic query answers on uncertain data. The probability for query processing.
to an answer allows users to place appropriate confidence in The goal of monitoring through sensor nodes is to infer
it. The simulation results demonstrate that our algorithm can information about objects from measurements made from
reduce resource usage and supply quality satisfied query answers remote locations. Since inference processes are always less
to users.

than perfect, there is an element of uncertainty regarding the

I. INTRODUCTION AND MOTIVATION answers. When viewed from this perspective, the problem of
uncertainty, which stands for the quality of query answers,

Recent developments in integrated circuit technology have is central to monitoring applications. Thus, to build useful
allowed the construction of low-cost sensor nodes with signal information systems, it is necessary to learn how to represent
processing and wireless communication capabilities. Wireless and reason with imperfect information.
sensor networks (WSNs) are generally consisted of a large In this paper, we propose our solutions on query opti-
number of sensor nodes [2] operating under energy constraints mization and execution following acquisitional query process-
in unattended mode, which are capable of limited compu- ing (ACQP) approach [16]. Compared with typical methods,
tation, communication and sensing. WSNs are intended for ACQP focuses on betaking the significant new query pro-
a broad range of environmental sensing applications from cessing opportunity that arises in sensor networks: the fact
weather data-collection to vehicle tracking and habitat moni- that smart sensors have the capability to control over where,
toring [1] [3]. when, and how often data is physically acquired (i.e., sampled)

The widespread deployment of sensor nodes is transforming and delivered to query processing operators. Motivated by
the physical world into a computing platform. Sensor nodes these, we propose a quality-guaranteed and energy-efficient
not only respond to physical signals to produce data, they (QGEE) query processing algorithm for distributed and het-
also embed computing and communication capabilities. They erogenous WSNs. In the following sections, we outline QGEE
are thus able to store, process locally and transfer the data paradigm, explain its key features, and describe in some
they produce. From a data storage point of view, WSN can detail using a particular example of environmental temperature
be regarded as a kind of database, distributed sensor database monitoring. We specify local rules achieving, desired sensor
system (DSDS). DSDS, compared to traditional database sys- nodes choosing, and query answers acquiring in terms of
tems, stores data within the network and allow queries to be bounded probabilistic values. In doing so, we show how
injected anywhere through query processing operators in the QGEE paradigm differs from existed query processing systems
network. and qualitatively argue that this paradigm offering scaling,



robustness and energy efficiency benefits. We quantify some of
these benefits via detailed packet-level simulations on QGEE. m

The remainder of this paper is organized as follows: in c(Sj)xj (3)

Section II, we provide some preliminaries on vector space j=1
model and k-partial set cover problem; Section III formulates SUBJECT TO:
the problems we considered for our algorithm; Section IV
presents our QGEE algorithm; simulation results are given in
Section V; Section VI concludes this paper. Yi + S x 3 _1 i=1,2,..., n, (4)

j:tiES3
II. PRELIMINARIES n

A. Vector Space Model Yi <_ n - k, (5)
ji=

Vector Space Model (VSM) [17] [18] is a way to represent xj_ 0 j=1, 2,..., m, (6)
documents through words that they contain. VSM has been
widely used in the traditional information retrieval (IR) field
[19] [20]. Most search engines also use similarity measures
based on this model to rank Web documents. VSM creates a Where xiE {0,1 } corresponds to each Sj ES. Iff set Sj belongs
space in which both documents and queries are represented by to the cover, then xj = 1. Iff set tj is not covered, then yj = 1.
vectors. For a fixed collection of documents, an m-dimensional tiEF.
vector is generated for each document and each query from III. PROBLEM FORMULATION

sets of terms with associated weights. Then, a vector similarity
function, such as the inner product, can be used to compute As a motivation for our quality-guaranteed and energy-

the similarity between a document and a query. efficient query processing, we describe a scenario:

In VSM, weights associated with the terms are calculated • A great multitude of temperature sensor nodes are ran-

based on the following two numbers: domly deployed in a region we interested. Individual

"* term frequency, fij, the number of occurrence of term yj sensor nodes (or in short, nodes) is connected to other

in document xi; and nodes in its vicinity through a wireless communication

"* inverse document frequency, gi = log(N/dj), where N interface, and it uses a multihop routing protocol to

is the total number of documents in the collection and dj communicate with nodes that are spatially distant. All

is the number of documents containing term yi. nodes are interconnected to at least one gateway directly
The similarity sitas (q, xi) between a query q and a document or through intermedial nodes. Gateways are in charge of
xi can be defined as an inner product of query vector Q and relaying data to a powered PC (front-end node) and, on
document vector Xi: the opposite direction, disseminating queries to related

nodes. Within this sensor network, each node is provided

" ( =Iwith equal computing and sensing capability, but mea-
sima(q, x) = Q7 = w(1) surement quality may be different.

Zm1 (Vi) 2 Y (wij) This scenario involves such a region-based query:

where mi is the number of unique terms in the document • Environmental Temperature Monitoring: With p confi-
collection. Document weight wij and query weight vj are dence, tell the average temperature of nodes in the region

defined by a rectangle (a,b,c,d).
wi={ ig(N/dj) y m = f~o(/~ ndWritten in SQL-like language [15], this query is shown in

vj= Jlog(N/dj) yj is aterm in q(2 Fi.1
otherwise. (2) Fig. 1.

SELECT AVG(temp)
B. k-Partial Set Cover Problem FROM sensors

Covering problems are widely studied in discrete optimiza- WHERE Ioc in (a,b,c,d) AND PROB>=p
tion. Basically, these problems involve picking a least-cost SAMPLE PERIOD 100 seconds;

collection of sets to cover elements. Classical problems in
this framework include general set cover problems and partial Fig. 1. Average Temperature Query in SQL Form

covering problems. k-partial set cover problem [21 ] as a partial
covering problem is about how to choose a minimum number
of sets to cover at least n elements, and which k elements A. Source of Imperfect Information
should be chosen. Imperfect information is ubiquitous (almost all information

k-partial set cover problem can be formulated as an integer that we have about the real world is not certain, complete
program as following, or precise). In many occasions imperfect information can

MINIMIZE: be classified into uncertainty, incompleteness, ambiguity and



imprecision proposed by Bonnissione, etc. [12], [14]. Incom- exhibit sensitivity variation similar to what is shown in
pleteness arises from the absence of values, imprecision from Figure. 3. Note that, nodes are more sensitive to the the
the existence of values which cannot be measured with suitable center of their regions than toward the edge.
precision, ambiguity from vague statement, and uncertainty
from the fact that an agent has constructed a subjective opinion
about the truth of a fact which it does not know for certain.

In the context of our analyzing and understanding of senstlwy
query answer uncertainty, a significant challenge is how to J
understand the nature and the source of uncertainty well on
temperature information derived from remote sensing. Image
chain approach [6] is one of the most important and useful (a) (b)
models for remote sensing processing. Image chain identifies
steps in remote sensing process (or links in the chain) and Fig. 3. (a) 1-Dimension Gaussian model of a PSF and (b) 2-Dimension

illustrates that these steps are interrelated. Gaussian model of a PSF

image Chain for Link Quality: Packets losing due to poor link qual-
, inonmenaal TeerutswMonitoring Appficalion ity introduces incompleteness into query answers. The

dynamic and lossy nature of wireless communication
oratnA iiticuit ipose major challenges to reliable, self-organizing WSNs.

lufnation Acqukit*ioi) (Query An•'e-r Atquision Packets transmission failures may happen during data
transmission because of collision, node dying out (no
battery), node being busy, or node's mobility. Moreover,
in physical layer, sensor mobility generates channel fad-
ing during data transmission, which degrades the perfor-

Fig. 2. Image Chain Model mance in terms of bit error rate (BER) and frame error
rate.

Viewing the working process of our temperature monitoring Fixing other conditions, such as node density, communica-
application, there are three kinds of imperfect information tion range, sensing range and network coverage, we change
source which contribute greatly to the uncertainty of query measurement quality, PSF and link quality separately to eval-
answers. They are measurement quality, point spread function uate the influences of those imperfect information sources
(PSF) of nodes and link quality. Fig. 2 illustrates our image on the correctness of query answers. The results are given
chain model. Links in the chain represent various steps in in Table I. Note that with measurement errors, misrepresent
the remote sensing process from nodes collecting information errors, or missing information increased, the errors included
related to environment (Input), flowing data records back to in query answers are obviously increased and therefore the
related front-end nodes (Collection) at run-time, to obtaining confidence of query answers is reduced.
query answers through processing all collected information at
front-end nodes (Output). TABLE I

Measurement Quality of Nodes: Measurement quality of USING ROOT MEAN SQUARE OF ERROR (RMSE) TO QUANTIFY THE

nodes introduces uncertainty and imprecise information ERRORS OF QUERY ANSWERS. LBR STANDS FOR LINK BREAK RATE.

into query answers. As we know, the quality of nodes'
sensing parts usually boils down to their measurement RMSE MeasureQuality PSE (ar2=1) LinkQuality
stabilities and measurement accuracies. In general, as 0-0.01 o=0.1 r=1.65m r=1.96m LBR=0.I LBR=0.5
measurement stability and accuracy increase, so do their MAX 0.2537 2.5618 22.882 25.17 0.2069 0.7132
power requirements and cost, which are all troublesome MIN 0.2541 2.5416 22.905 25.195 0.1291 0.5895

for general sensor nodes. Therefore, inaccurate mea- AVG 0.0102 0.0944 3•0802 35202 00-46 0.3127
surements supplied by sensor nodes are very common
phenomenons.
Point Spread Function (PSF) of Nodes: PSF of nodes in-
troduces ambiguity into query answers. Our temperature B. Source of Energy Waste
monitoring application is interested in the temperature Within a network, not all available nodes provide useful
over a region instead of one point in space. But consider- information that improves the accuracy of final results. Fur-
ing operation feasibility, cost and speed, sampling method thermore, some information might be redundant because nodes
is widely used instead of completely measuring. In this closing to each other would have similar data. From this
aspect, another imperfect information source is raised: prospect, collecting raw readings from all nodes to front-end
PSF of nodes. PSF is caused by nonuniform sensitivity nodes involves large amounts of raw readings which will lead
within the region associated with nodes. Most nodes to shorter lifetimes, especially for energy-limited WSNs.



For example, there is a WSN with n nodes. We assume Given a piece of region, the number and the location of
that the lifetime for all nodes is Tlife and queries submit- nodes determine the observe proportion together. In order
ted to the network are processed sequently. If there are w to employ as few as possible nodes to cover as large
queries (A1 , A2, ... , and A,) relating to certain regions in as possible region, we should select those nodes located
this network (w < n), )'y nodes participate A1 relating to at optimal locations. The detail on determining optimal
area SA 1 , -y2 nodes participate A2 relating area SA2 , ".., locations is presented in Section IV-A.2.
and -yw nodes participate A,, relating to area SAW. In this • Measurement Quality
case, node density is S (71+-y2+... +wl=n) and the Since the cost and the measurement quality of sensor
lifetime of this network is Lt', = wTtife. Note that, with nodes are related to each other, sensor nodes owning
the number of query w decreasing, node density is increased various quality levels are always deployed simultaneously

S> nSA2  n ), and the lifetime of network is in a WSN for economical reasons. Furthermore, through
decreased (Lt,l < Lt,2 < Lt,,). a query, database users supply not only what information

For energy reservation issues on information collection, they are interested in, but also the requirement on the
previous networking researches approach data aggregation [91 quality of query answers, i.e., the confidence of query
as an application specific technique to reduce the amount of answers. In this case, we should select suitable nodes to
data which is sent over the network. But where the aggre- response queries. In Table I, note that the RMSE of query
gations should be carried out is a very essential and tough answers are quite different under various measurement
problem, which relates to the correctness and the effectiveness quality (in terms of different variance in that example).
of operations. • Remaining Battery Capacity

Remaining battery capacity of sensor nodes is our third
IV. QUALITY-GUARANTEED AND ENERGY-EFFICIENT consideration factor. When the battery of a node is used

(QGEE) QUERY PROCESSION ALGORITHM DESCRIPTION up, data observed by this node will be missed, which will
AND DISCUSSION increase the uncertainty of query answer at some degree.

Keeping these two problems: quality-required and power- This inspires us to select those nodes with high remaining
limit in our mind, we propose a quality-guaranteed and energy- battery capacity, so that all expected information can be
efficient (QGEE) query processing algorithm for WSNs. collected.
QGEE employs an in-network query processing method to In our algorithm, we employ VSM to combine all consid-
task networks through declarative queries, which is critical ering factors to select the most related nodes to participate
for reducing network traffic when accessing and manipulating query processing. The query vector (T) is designed as T =

sensor data. [Rj,Ad,Bm].
In QGEE algorithm, only a subset of nodes within a network • R, stands for location relativity. It is the indicator of the

will be chosen to acquire readings or samples corresponding distance between the location of a sensor node at (x,y)
to the fields or attributes referenced in queries. The goal of our and the optimal location at (xo,yo).
approach is to reduce interference coming from measurements
with extreme errors and to minimize energy consumption by R1 = 1 - L\AX - x°)2 + (y - y0), (8)
providing service that is considerably necessary and sufficient L

for the needs of applications. Moreover, according to the
analysis and classification on sources of imperfect information, where L is a factor to ensure R, to be a positive number

we employ probabilistic method to formulate the distribution and not larger than one. One way to design L is to let

of them in terms of probability distribution function (PDF). its value equal to the maximum distance of two nodes

Finally probabilistic query answers are acquired on uncertain within a network.
data' The probability in a query answer allows users to place •Ad stands for measurement quality. Ad equals to the

appropriate confidence in it as opposed to having an incorrect confidence of measurement bias. For example, for speed

answer or no answer at all. detecting sensor nodes, CXM539 [10], the bias is
±lmGauss and owns 0.95 confidence. In this case, Ad =

A. Confidence Control for Query Answers 0.95.
* Bm stands for remaining battery capacity.

1) Query Vector Space Model (VSM) Design and Active When a query submitted, the top-end node related fixes on
Nodes Selection: In information retrieval, VSM is a very optimal locations for this query and translates the query from
efficient method to qualify the correlation between a query SQL form into a query VSM vector To=[1,Ad,o,Bm,o]. For
and all candidate documents. If we treat all sensor nodes as instance, To is [1, p, 5] according to the query given in Fig. 1.
candidate documents for a query, the correlation between a We assume the maximum battery capacity for nodes is 5 J. To
query and nodes can be determined through the same principle and information on optimal locations will be flooded over the
used in information retrieval. Following factors are considered whole network.
for our VSM vector design: Nodes update their query VSM vectors (Ti =

* Node Location [Rti, ,Ad,i, Bi,j] (i=1,2,-'', n)) according to To and



optimal locations. We assume that there are n nodes in this (g(d)) of nodes in a WSN is defined by (11) and confidence
network. Rl,i is defined as: of query answer is required to be at least p as shown in the

Rli = max~riij (9) example in Fig. 1.

3 1 d
2

)2+ g(d) = -- e-2%-2 (11)

where r,ij - 1 - /( L-° + )2 (xi, yi) is the

position of node i, and (xoj, yoj) is the position ofjth optimal where d is the distance between a point on the monitoring

location. region and a specific node. o2 is the variance of d. g(d) has

We design a query correlation, which we refer to as (, to the similar form as shown in Fig. 3(a).
express the correlation between each node and a query. We Compared to other locations within a disk, measurements of

formulate ( in (10). Observe that, query correlation (Tro,T, is active nodes own least sensitivity/confidence when they stand
a function of query quality requirement and node's energy, for the situation at the disk's edge. This nature inspires us to

measurement quality and location. Moreover, C-ro,rf, is corn- get the criteria to acquire suitable value for r. That is, if the

puted by nodes through a distributed way. sensitivity/confidence is equal to or higher than p at the edge
of disks, we can ensure that the measurements of active nodes

(T.,T•= simts (To, Ti) = To • Ti can represent the situation within this disk with p confidence.
1 x R,i + Ad,o Ad,i + B,o B (10) We drive equation (11) to determine r (see equation (12)).

ý(1 + A2 0 + 2 A B + i r = -a /I(2ira 2 p2) (12)d, M,o)(Rt,i + d2,i + B7o22

The higher C is, the higher the similarity between query and Note that r is a function of standard variance of PSF a and
a node is. Inspired by this, we form our criteria for active nodes query quality requirement p. If we fixed a, r will decrease
choosing: The decision-which nodes are active to respond with the increase of p. That means, with higher query quality,
queries-is based on their query correlation. That is, nodes with smaller disks are used to search the optimum locations and
highest query correlation among their one-hop neighbors are more active nodes are needed for a query.
chosen to participate in related query processing. In QGEE, 3) Sample Size Determination and Semi-Manufactured
active nodes are chosen locally leveraging cooperations among Query Answer Acquisition: We have picked up a set of nodes
nodes. We assume that each node knows query correlations of to respond a query. While, "How many measurements should
its one-hop neighbors, which can be achieved by requiring be included in one sample?" is the question we will answer
each node to broadcast its query correlation initially, in this Section. Sample (any subset of a population) size

determination refers to the process of determining exactly how2) Optimal Location Determination: We model the many samples should be measured/observed in order that the
problem-determining optimal locations for a query, as a k- sampling distribution of estimators meets users' pre-specified

partial set cover problem. This problem is defined as follows: sarget dision o23].

Let n be the number of all sensor nodes, n' be a given positive Since nodes' readings are subject to many small and random

integer so that n' < n. If we have k same disks with radius r, errors re aue byelimtans s' ardwr
errors which are caused by limitations of devices' hardware

the k-partial set cover problem tries to solve whether k disks and environmental noise, uncertainty is inherent regarding to
can cover at least n' nodes. In this paper, we only consider true values. Hence nodes reading (x) can be expressed as:
sensor nodes in a plane (the dimension is 2). This kind of
k-partial set cover problem is a NP problem. x = v + em + 7 (13)

At present, all known algorithm for NP problems require
time that is exponential to the problem size. It is unknown where v is the true value, em is the measurement error
whether there are any faster algorithms. Therefore, to solve introduced by limitations of devices' hardware, and q is the
a NP problem for any nontrivial problem size, one of the environmental noise which is considered as white Gaussian
approaches is approximation algorithm, which can acquire the noise in this paper and il - N(0, -L). Based on central
solution during polynomial time. SETCOVER algorithm [21] limit theorem [13], the probability distribution of measure-

is a good approximation method to determine the value of k ment errors complies with a normal distribution. That is,
and the locations of these k disks on a plane. In QGEE, we e, - N(o, a'). Generally, in product's technical datasheet,
choose centers of those k disks as our optimal locations. If manufa e,. Generally , infproduct'suteni datashwe et hes k isk ca coer ll ensr ndes(i~., ' =n),manufactories supply the information on measurement errors.
we set these k disks can cover all sensor nodes (i.e., n ' =n) For example, as we mentioned above, the bias for CXM539 is
those nodes locating at the centers of these disks can almost +lGauss with 0.95 confidence. That means for sensor nodes
monitor the region completely interested by users. CXM593, a2 = 0.1302. For general cases, if we know the

In QGEE, considering the influence of PSF of nodes on maximum bias Ax and its confidence p, we can obtain the
uncertainty of query answers, we adaptively determine the general expression for u 2. That is
value of the radius r of disks according to users' quality g

requirements instead of fixing it. We illustrate the process of 2  AX (14)
calculating r with a simple example. We assume that PSF e [Q_1(1 2 P)]2



With (21), we obtain a bounded value, i.e., v e [G -

where Q(x) stands for Q-Function, defined as Q(x) Ax, en + Ax], which owns p confidence. We call this kindf0 1 - 2 of query answers from active nodes as "semi-manufactured"

Moreover, em and n. are independent. Therefore, nodes query answers.
reading also complies with a normal distribution with lx-mean Since heterogenous is one of natures of general WSNs, that

and ax-standard derivation given in (15). is, measurement quality for each node may not be same, the
sample size is given in (22) and confidence interval for node

v a'-d o, a, + (15) i is vi E [xý,j - Ax, xý,j + Axi] with pi confidence.

2

fx(x) = 1 + QGE(6 4) Information Collection: After active nodes are chosen, a
V27(a data centric routing algorithm, EM-GMR [ 11 ] is employed by

2 QGEE, which is a multipath, power-aware and mobility-aware

Based on nodes reading, the estimator of the true value is routing scheme. EM-GMR is used to establish the route-tree
defined as &,• = 1 Eý , xj, thus the probability distribution from active nodes to front-end nodes for query answer return.
function of y (fg (n)) is similar to fx (x) with A, =px EM-GMR uses reactive networking approach, in which it finds
and &2 - 2 Tha=t is a route only when a message is to be delivered from sourceto destination.

1 £~2±
fy, G-W e- 2_ EM-GMR scheme consists of route discovery phase, route

f&,6n,/2r reconstruction phase, and route deletion phase. In the route

e 2- 2 (1) discovery phase, the source node uses a fuzzy logic system

-- N (17) (FLS) [8] to evaluate all eligible nodes (closer to the des-
/2r(or + 2) tination location) in its communication range based on the

In QGEE, we let Ax as the margin of error between the parameters of each node: distance to the destination, remaining

estimator (yin) and the true value (v) to reflect the target battery capacity, and degree of mobility. The source node
precision of queries, as well as we specify our tolerance for chooses the top M nodes based on the degree of the possibilitymaking this error not smaller than p. The criteria for sample (output of FLS). The source node sends a Route Notification
size determination is simply stated as: (RN) packet to each desired node, and each desired node will

reply using a REPLY packet if it is available. If after a certain

Pr{Ikn -- v1 • Ax} Ž p (18) period of time, the source node did not receive REPLY from
some desired node, it will pick the node with the M + 1st

We have known the PDF of -ý, hence the probability of degree of selection possibility. In the second hop, selected
the estimation error which not larger than d is nodes in each path will choose its next hop node uses a FLS.

Ax Note that EM-GMR considers distance to the sensor node,
Pr{Ien - vi < AxI = 1 - 2Q( ) (19) remaining battery capacity, and mobility of each sensor node

during route path setting up. This scheme could tremendously

Solving (18) and (19) for n, we obtain reduce the frame loss rate and link failure rate since mobility
was considered, so that incompleteness information caused by

n (a + [2 AQ2r -- 2 J (20) poor link quality is reduced at certain degree.
Ax2  B. Energy Consumption Control for Question Processing

Since a statistic measurement on samples can rarely, if

ever, be expected to be exactly equal to a parameter, it is In energy consumption control, we employ three strategies.
important that an estimation is accompanied by a statement They are active nodes number control, sample size control and
which describes the precision of this estimation. Confidence link quality control.
intervals [7] provide a method of stating both how close the First, in the query SVM design, node location is included
value of a statistic being likely to be value of a parameter besides measurement quality and remaining battery capacity,
and the chance of being close. An confidence interval of an since it is directly related to the necessary number of active

attribute, denoted by Uj is a interval [li, hi] such that li and nodes to cover whole monitoring region. Through solving

hi are real-valued, and that the condition hi > li holds, optimal location problem, we can employ as few as possible
Note that (18) is the same statement made when defining a nodes to cover as large as possible monitoring region in order

100 x p% confidence interval, and d is about half of the width to carry out energy reservation task.
of the confidence interval. Using the sample size defined by Second, in order to ensure the confidence of estimators
(20) to estimate the true value (v), we have satisfy users' requirements, we obtain (22) for determining

the value of sample size. However, too large a sample implies
P•{yen - Ax < v< &< + Ax} > p (21) a waste of resources, and too small a sample diminishes the



utility of the results. In our algorithm, we let (22) specify the 1
value of sample size during information sensing. Therefore, we Pmax 7 Pi (27)

can acquire enough samples to met users' pre-specified target
precision, at the same time reduce the energy consumption for For MINIMUM aggregation, the final query answer is

data sensing. Zmin E [1min, hmi.] with p' confidence in bounded prob-

Third, we tremendously reduce the frame loss rate and ability form. Where

link failure rate through choosing more suitable nodes to set 1min = minfli} and h' = min{hi} (28)
up route-tree for queries. With this improvement, we can

reduce energy consumption for route-tree maintenance and 1
information retransmission. P = (29)Pmin• EPi (9

C. Final Query Answer Acquisition

After queries have been optimized and disseminated, the 2) AVERAGE Aggregation: In this aggregation operation, a
query processor begins to execute them-processing all semi- derivative value over a group of sensor nodes' data is returned.
manufactured query answers to acquire the final query an- Zavg = - J: :,njj. The PDF for Zavg (fzo,,(z)) has the
swers. Aggregation is required in many database applications, similar distribution to fk (h). But the mean and variance
which is used in statistical queries that summarize information are I 2•_ ,•n and -1 E-- &2 individually.

from database tuples. Common functions applied to collections For AVG aggregation, the final query answer is Zavg E

of numeric values include SUM, AVERAGE, MAXIMUM, [1/ havg] with confidence in bounded probability form.
and MINIMUM. In this paper, our discuss on how to obtain Where

final query answers focuses on those most often used aggre-
gation operations: MAXIMUM, MINIMUM, and AVERAGE. 1 = 1- li and hl = hi (30)

Returned semi-manufactured answers are confidence inter- ag V)=a

vals, i.e., [xa,i - Axi, xý,i + Axi] with pi confidence (i =
1,2... , 0). For simplified reason, we let li = xý,j - Axi, (31)
hi = x^,i + Axi. We assume there are 0 active nodes for a Pavg Pi (31)

query.
V. SIMULATION AND PERFORMANCE EVALUATION

1) MAXIMUM/MINIMUM Aggregation: We let Zmaax Nodes are randomly deployed in an area of 10 × 10m 2,
maxi(xi) and Zmin - mini(xi) (i = 1,2,... -,). The and sensing range is dm. The initial energy of sensor nodes

cumulative distribution function (CDF) of !,i is given in (23) auninormly i s wiThin energy onte no

according to (17). uniformly distributes within [0,5]J. We ran Monte Carlo
simulations to remove the randomicity of simulation results.

Q(_F- (22) We compare our QGEE against the query processing method
F (, =xn V-,•, ) (23) without any query optimization.

The energy consumption model for data sensing is shown

Since measurements from individual active nodes are indepen- in (32).
dent with each other, the CDFs for Zmz, and Zmin is given Eq = E8 * St (32)

in (24) for MAXIMUM and in (25) for MINIMUM.

1P where Eq is the energy consumed by processing a query. E.6

Fzm,. (z) = F.,, (z) = f (J /(z - An,,i)) (24) is the energy consumed by data sensing. St is the sample
i=1 i~l Uni,i period. In this simulation, we choose: E,, = 5nrJ/sample.

We use the same energy consumption model as in [22] for
And the radio hardware. To transmit an i-symbol message for a

distance d, the radio expends:

FZm,-,(Z) = 1 - H(1- F.n,.(z)) ETx(ld)'= ETx-etec(1)+TTx-armp(1,d) = lxEelC,+lxefSxd 2

i=1 (33)

-- -i)) and to receive this message, the radio expends:
1-11(1- 1 (25)--E 1 (6rl ni,, ERx = 1 X Eetec (34)

For MAXIMUM aggregation, the final query answer is The electronics energy, Elej, as described in [22], depends on
Zmax e [lmaz, h~ma] withPmax confidence in bounded factors such as coding, modulation, pulse-shaping and matched
probability form. Where filtering. The amplifier energy, eas x d2 depends on the distance

to the receiver and the acceptable bit error rate. In this paper,
l1' a. max{li} and h' ax = max{hi} (26) we choose: Ejt6 = 50nJ/syn, efh = lOpJ/sym/m 2 .



A. Active Nodes Selection Scheme Performance

In Fig. 4, we plot the query index versus the nodes dead
time. We can see that after processing about 20 queries, all
nodes, without query optimization, use up their energy. But 012

for QGEE, the whole network is not down until 53 queries i . .

are completed. Therefore, QGEE can reserve 50% of energy o ....
on processing same number of queries. ..o.
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50% nodes (30 nodes) die out, the network lifetime for EM-
20 GMR has been extended about 175-125 = 40%. In Fig. 8, we

125
10 compared the frame loss rate of these two scheme. Observe

o 10 20 2u 0 0 10 that our EM-GMR outperforms the GMR for about 20% less
frame loss. The average latency during transmission (end-to-

Fig. 4. Nodes Dead Time end) is 419.68ms for our EMGMR and 407.5ms for GMR,
and link failure rate for EMGMR is 5.68%, but for GMR it is

In Fig. 5, we compare the observation covering rate of these 10.42%.
tw o schem es. Observed that, QGEE em ploys 70 - 45 = 25 ..................................................................................
less nodes to cover 90% area interested. This simulation result
illustrates the reason why our QGEE can implement energy o ........... !............. i............ i . . . . . .. : ......... . . . . . ............ "

reservation. That is, about 25 x 100 = 35.71% nodes switch70to e erg sav ng odel dur ng uery pro essi g. . ......... • .......... •.......... •........... ............ " ............. ............ •
to energy saving model during query processing.
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Fig. 7. Simulation time versus number of nodes dead
.. .. ................... ......

oo C. Probabilistic Answers Acquisition Scheme Performance
o o l O 0 `O O W SO 70 8O O 1o

Nodes Explored In this simulation, we give various query answer confi-
dence requirement (i.e., various value for p). To simplify the

Fig. 5. Observation Coverage Rate simulation scenarios, we set there are enough nodes satis-

fying measurement quality requirements. For MAXIMUM,
By employing our QGEE, the energy is saved and the MINIMUM and AVERAGE aggregation operation, we check

lifetime of network is extended. But the cost to achieve the probability of true values locating within the confidence
this improvement is a certain degree of observation covering intervals acquired at front-end nodes (see Table II). Note
rate decreasing. Fig. 6 shows that the biggest decrease of that, our QGEE can successfully obtain suitable confidence
observation covering rate is 16.6% for QGEE. intervals to guarantee the true value of query answers locating

B. EM-GMR Performance within this interval with a probability (p2), which is equal to
or larger than the pre-specified probability (pi) by users.We compared our EM-GMR against the geographical mul-

tipath routing (GMR) scheme where only distance to the VI. CONCLUSIONS
destination is considered. In Fig. 7, we plotted the simulation In this paper, we propose a quality-guaranteed and energy-
time versus the number of nodes dead. Observe that when efficient algorithm (QGEE) for sensor database systems. Given
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[17] D. Chow and C. T. Yu, "On the construction of feedback queries," ACM
J. Computing Machinery, vol. 29, no. 1, pp. 127-151, Jan. 1982.

[18] S. K. M. Wong, W. Ziarko, V. V. Raghavan and P. C. N. Wong, "On
modeling of information retrieval concepts in vector spaces," ACM Trans.

a query, our QGEE can adaptively form an optimal query Database Systems, vol. 12, no. 2, 1987.
plan in terms of energy efficiency and query quality. Our [19] L. Gravano, H. Garcia-Molina and A. Tomasic, "Gloss: Text-source

discovery over the internet" ACM Trans. Database Systems, vol. 24, no.approach can reduce interference coming from measurements 2, Jun. 1999.
with extreme errors and minimize energy consumption by pro- [20] D. Grossman, 0. Frieder, D. Holmes and D. Roberts, "Integrating
viding service that is considerably necessary and sufficient for structured data and text: A relational approach," J of the American Society

for Information Science, vol. 48, no. 2, Feb. 1997.the need of applications. Moreover, we employ probabilistic [21] R. Gandhi, S. Khuller and A. Srinivasan, "Approximation algorithm formethod to formulate the distribution of imperfect information partial covering problems;' J. of Algorithms, vol. 53, no. 1, pp. 55-84,

sources in terms of probability distribution function (PDF), Oct. .Heinzelman, A. P. Chandrkasan and H. Balakrishnan "An

and acquire probabilistic query answers on uncertain data. The application-specific protocol architecture for wireless microsensor net-
probabilities to an answer allow users to place appropriate works," IEEE Trans. Wireless Communications, vol. 1, no. 4, Oct. 2002.
confidence in it. [23] J. M. Mendel, Lessons in Estimation Theory for Signal ProcessingCommunications, and Control, Prentice Hall, NJ, 1995.

The simulation results demonstrate that our algorithm can

reduce resource usage about 50%, the frame loss rate about
20% and supply quality satisfied query answers to users.
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Abstract

In this paper, we introduce a new method for packet transmission delay analysis and pre-

diction in mobile ad hoc networks. We use fuzzy logic system (FLS) to coordinate physical

layer and data link layer. We demonstrate that a type-2 fuzzy membership functions (MFs),

i.e., the Gaussian MFs with uncertain variance is most appropriate to model BER and MAC

layer service time. Two FLSs: a singleton type-1 FLS and an interval type-2 FLS are designed

to predict the packet transmission delay based on the BER and MAC layer service time. Sim-

ulation result shows that the interval type-2 FLS performs better than the type-1 FLS. And

we use the outcomes of FLS predictors to control the transmission powers. Simulation results

illustrate us the performances of the energy consumption, average delay and throughput. They

show that the interval type-2 FLS performs better than the type-1 FLS. And we use the actual

transmission delay to get the performance bound.

Index Terms : wireless Ad Hoc networks, cross-layer design, fuzzy logic system,

interval type-2 fuzzy sets, packet transmission delay analysis



1 Introduction

The demand for Quality of Service (QoS) in mobile ad hoc networks is growing in a rapid speed.

To enhance the QoS, we consider the combination of physical layer and data-link layer together,

a cross-layer approach. A strict layered design is not flexible enough to cope with the dynamics

of the mobile ad hoc networks [1]. Cross-layer design could introduce the layer interdependencies

to optimized overall network performance. The general methodology of cross-layer design is to

maintain the layered architecture, capture the important information that influence other layers,

exchange the information between layers and implement adaptive protocols and algorithms at each

layer to optimize the performance.

Lots of previous works have focused on cross-layer design for QoS provision. Liu [2] combine

the AMC at physical layer and ARQ at the data link layer. Ahn [3] use the info from MAC layer to

do rate control at network layer for supporting real-time and best effort traffic. Akan [4] propose a

new adaptive transport layer suite including adaptive transport protocol and adaptive rate control

protocol based on the lower layer information.

However, cross-layer design can produce unintended interactions among protocols, such as an

adaptation loops. It is hard to characterize the interaction at different layers and joint optimization

across layers may lead to complex algorithm.

In this paper, we discuss one of the parameters for QOS: packet transmission delay. And our

algorithm is quite different from all the previous works. We propose to use the Fuzzy Logic System

(FLS) for packet transmission delay analysis and prediction. We apply both a singleton type-1 FLS

and an interval type-2 FLS for the analysis and prediction.

We apply the transmission delay predictors to control the transmission power. The simulation

achieves performance parameters of average delay, energy consumption and throughput. Assume

we know the actual transmission delay, we also get these parameters as the performance bounds.

The remainder of this paper is structured as following. In section II, we introduce the prelim-

inaries. In section III, we make an overview of fuzzy logic systems. In section IV, we apply the
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FLS into the cross-layer design. Simulation results and discussions are presented in section V. In

section VI, we conclude the paper.

2 Preliminaries

2.1 IEEE 802.11a OFDM PHY

The physical layer is the interface between the wireless medium and the MAC [5]. The principle

of OFDM is to divide a high-speed binary signal to be transmitted over a number of low data-rate

subcarriers. A key feature of the IEEE 802.11a PHY is to provide 8 PHY modes with different

modulation schemes and coding rates, making the idea of link adaptation feasible and important.

2.2 IEEE 802.11 MAC

The 802.11 MAC uses Carrier-Sense Multiple Access with Collision Avoidance (CSMA/CA) to

achieve automatic medium sharing between compatible stations. In CSMA/CA, a station senses

the wireless medium to determine if it is idle before it starts transmission. If the medium appears

to be idle, the transmission may proceed, else the station will wait until the end of the in-progress

transmission. A station will ensure that the medium has been idle for the specified inter-frame

interval before attempting to transmit.

Besides carrier sense and RTS/CTS mechanism, an acknowledgment (ACK) frame will be sent

by the receiver upon successful reception of a data frame. Only after receiving an ACK frame

correctly, the transmitter assumes successful delivery of the corresponding data frame. The sequence

for a data transmission is: RTS-CTS-DATA-ACK.

A mobile node will retransmit the data packet when finding failing transmission. Retransmission

of a signal packet can achieve a certain probability of delivery. There is a relationship between the

probability of delivery p and retransmission times n [6]:

1
n = 1.451n 1 (1)
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The IEEE 802.11 standard requires that a data frame is discarded by the transmitter's MAC

after certain number of unsuccessful transmission attempts. According to the requirement of prob-

ability of delivery, we choose the minimum number of retransmission.

When MAC layer acquires access to the channel, the nodes will exchange the RTS-CTS-DATA-

ACK packets. After the transmitters receive an ACK packet, a packet is transmitted successfully.

In this paper, we assume that there'will be always best-effort traffic present that can be locally and

rapidly rate controlled in an independent manner at each node to yield necessary low delays and

stable throughputs.

2.3 Bit Error Rate

BER is the percentage of bits with errors divided by the total number of bits that have been

transmitted, received or processed over a given time period. It is a measure of transmission quality.

The high BER means high packets loss rate. Requests for resends will increase latency. For delay

insensitive traffic requires a very low BER.

2.4 MAC Layer Service Time

There are three basic processes when the MAC layer transmits a packet [7]: the decrement process

of the backoff timer, the successful packet transmission process that takes a time period of T,,,

and the packet collision process that takes a time period of Tcoi. Here, T8 ,c is the random variable

representing the period that the medium is sensed busy because of a successful transmission, and

T,,, is the random variable representing the period that the medium is sensed busy by each station

due to collisions. The MAC layer service time is the time interval from the time instant that a

packet becomes the head of the queue and starts to contend for transmission, to the time instant

that either the packet is acknowledged for a successful transmission or the packet is dropped. This

time is important when we examine the performance of higher protocol layers.
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2.5 Packet Transmission Delay

The packet delay represents the time it took to send the packet between the transmitter and the

next-hop receiver, including the deferred time and the time to fully acknowledge the packet. The

packet transmission delay between the mobile nodes includes three parts: the wireless channel

transmission delay, the Physical/MAC layer transmission delay, and the queuing delay [8].

Defining D as the distance between two nodes and C as the light speed, the wireless channel

transmission delay as:

Delaych = D (2)

The Physical/MAC layer transmission delay will be decided by interaction of the transmitter

and the receive channel, the node density and the node traffic intensity etc.

The queuing delay is decided by the mobile node I/O system-processing rate, the subqueue

length in the node.

In order to make the system "stable", the rate at which node transfers packets intended for

its destination must satisfy all nodes that the queuing lengths will not be infinite and the average

delays will be bounded.

2.6 Energy

A mobile node consumes significant energy when it transmits or receives a packet. But we will not

consider the energy consumed when the mobile node is idle.

The distance between two nodes are variable in the mobile ad hoc networks and the power loss

model is used. To send the packet, the sender consumes [9],

Ptx = Pelec + efs d 2 (3)

and to receive the packet, the receiver consumes,

Prx = Pelec (4)
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Where Pe,,, represents the power that is necessary for digital processing, modulation, and Cfs

represents the power dissipated in the amplifier for the free space distance d transmission.

2.7 One-step Markov Path Model

The mobile nodes are roaming independently with variable ground speed. The mobility model is

called one-step Markov path model [10]. The probability of moving in the same direction as the

previous move is higher than other directions in this model, which means this model has memory.

Fig.1 shows the probability of the six directions.

Figure 1: One-step Markov Path Model

3 Overview of Interval Type-2 Fuzzy Logic Systems

Figure 2 shows the structure of a type-2 FLS [11]. It is very similar to the structure of a type-1

FLS [12]. For a type-1 FLS, the output processing block only contains the defuzzifier. We assume

that the reader is familiar with type-1 FLSs, so that here we focus only on the similarities and

differences between the two FLSs.

The fuzzifier maps the crisp input into a fuzzy set. This fuzzy set can, in general, be a type-2

set.

In the type-1 case, we generally have "IF-THEN" rules, where the /th rule has the form "R1 : IF

x, is F1 and x2 is F1 and... and x is F1, THEN y is G"', where: xis are inputs; F~s are antecedent

sets (i = 1,... -,p); y is the output; and Gls are consequent sets. The distinction between type-1

and type-2 is associated with the nature of the membership functions, which is not important while
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TYPE-2 FUZZY LOGIC SYSTEM

- I OUTPUr CRISP
N- ------- ----

CRISP D RFUP
INPUT I I

PUZZIPIER ITYPE-RIEDUCER

-- - -- -- TYPE
I ~REDUCED
INFERENCE SET

PET INPUT I ITY OUTPUT
SETS

Figure 2: The structure of a type-2 FLS. In order to emphasize the importance of the type-reduced

set, we have shown two outputs for the type-2 FLS, the type-reduced set and the crisp defuzzified

value.

forming rules; hence, the structure of the rules remains exactly the same in the type-2 case, the

only difference being that now some or all of the sets involved are of type-2; so, the lth rule in a

type-2 FLS has the form "R1 : IF x, is FP and X2 is FP and ... and xp is 4t, THEN y is G",.

In the type-2 case, the inference process is very similar to that in type-1. The inference engine

combines rules and gives a mapping from input type-2 fuzzy sets to output type-2 fuzzy sets. To

do this, one needs to find unions and intersections of type-2 sets, as well as compositions of type-2

relations.

In a type-1 FLS, the defuzzifier produces a crisp output from the fuzzy set that is the output

of the inference engine, i.e., a type-0 (crisp) output is obtained from a type-i set. In the type-2

case, the output of the inference engine is a type-2 set; so, "extended versions" (using Zadeh's

Extension Principle [13]) of type-1 defuzzification methods was developed in [11]. This extended

defuzzification gives a type-1 fuzzy set. Since this operation takes us from the type-2 output sets

of the FLS to a type-1 set, this operation was called "type-reduction" and the type-reduced set so

obtained was called a "type-reduced set" [11]. To obtain a crisp output from a type-2 FLS, we can

defuzzify the type-reduced set.

General type-2 FLSs are computationally intensive, because type-reduction is very intensive.

Things simplify a lot when secondary membership functions (MFs) are interval sets (in this case,

the secondary memberships are either 0 or 1). When the secondary MFs are interval sets, the type-2

FLSs were called "interval type-2 FLSs". In [14], Liang and Mendel proposed the theory and design
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of interval type-2 fuzzy logic systems (FLSs). They proposed an efficient and simplified method

to compute the input and antecedent operations for interval type-2 FLSs, one that is based on a

general inference formula for them. They introduced the concept of upper and lower membership

functions (MFs) and illustrate their efficient inference method for the case of Gaussian primary

MFs. They also proposed a method for designing an interval type-2 FLS in which they tuned its

parameters.

In an interval type-2 FLS with singleton fuzzification and meet under minimum or product

t-norm, the result of the input and antecedent operations, F', is an interval type-1 set, i.e., F1

[f ', 7f], where f' and f1 simplify to

f l' (Xj)*..., , (xp) (5)

and

f• = )Tj• (Xj) ,..., (XP) (6)

where xi (i = 1, ... , p) denotes the location of the singleton.

In this paper, we use center-of-sets type-reduction, which can be expressed as:

Ycos(y1,..yM, F1, .. FM) =[Y1'Yl]= ', ... fyM ff... T _R/ I(7)

where Ycos is an interval set determined by two end points, yj and Yr; fi C Fi = [f_, ];

-= [yi, yf], and Y' is the centroid of the type-2 interval consequent set G1; and, i = 1, ... , M.

Because Yo, is an interval set, we defuzzify it using the average of yj and y,; hence, the defuzzified

output of an interval type-2 FLS is

fx Yl + Yr (8)
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4 Modeling BER and MAC Layer service time with Gaussian

Membership Function

4.1 Analyzing and Modelling BER

Let p be the probability that bit is error in any given time. So p can be described as a random

variable with a known mean value Ea.

Now, at any given time the bit is error with probability p and the bit is correct with probability

i-p. Since the bit is either error or correct, the number of the bits it is error(Eb) for a fixed length

transmission bits is binomial random variable. The length of the transmission bits is Nt, The

probability that Eb takes any value x is :

P{Eb = X1 = Cpx(lp)N x (9)

As the number of the length of the transmission bits increase, the binomial distribution is approx-

imated to a normal distribution, with mean p = pNt and variance a 2 
= p(1-p)Nt.

In this paper, we set up fine membership functions (MFs) for BER. From the original data of

BER shown in Table I, we decomposed the whole data sets into ten segments and computed the

mean mi and std ai of the BER of the ith segment, i = 1, 2, ... , 10. We also computed the mean

m and std a of the entire BER. To see which value -mi or ai- varies more, we normalized the mean

and std of each segment using mi/m, and ui/a, and we then computed the std of their normalized

values, um and Ustd.

As we see from the last row of Tables I, an <« aOtd. We conclude, therefore, that if the BER of

each segment (short range)are Gaussian with uncertain standard deviation. One example of type-2

Gaussian MF with uncertain standard deviation is shown in Fig.3.
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Table 1: Mean and std values for ten segments and the entire BER, and their normalized std.

BER mean std

Segment 1 0.016613 0.033315

Segment 2 0.015618 0.027857

Segment 3 0.015528 0.017401

Segment 4 0.016206 0.02107

Segment 5 0.015721 0.017148

Segment 6 0.016298 0.029309

Segment 7 0.017062 0.037428

Segment 8 0.016253 0.022871

Segment 9 0.016448 0.023194

Segment 10 0.016237 0.020675

Entire Traffic 0.016198 0.025829

Normalized std 0.029161 0.26184

4.2 Analyzing and Modelling MAC Layer Service Time

Recent research by Zhai, kwon and Fang [7] discovered that the lognormal distribution could match

for the MAC layer service time. i.e., if the MAC layer service time for the packet i is s8, then

log10 si i- Af(.; m, a2) (10)

We, therefore, tried to model the logarithm of the MAC layer service time, to see if a Gaussian

MF can match its nature. We decomposed the whole data sets into ten segments and computed

the mean mi and std ac of the logarithm of the MAC layer service time of the ith segment,

i = 1, 2,... , 10. We also computed the mean m and std a of the entire logarithm of the MAC layer

service time. To see which value -mi or o'j- varies more, we normalized the mean and std of each

segment using mi/m, and ai/a, and we then computed the std of their normalized values, om and
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Figure 3:CType-2 Gaussian MF with uncertain standard deviation

U std.

As we see from the last row of Tables HI, • < 9,td. We conclude, therefore, that if the

logarithm of MAC layer service time of each segment (short range)are Gaussian with uncertain

standard deviation, as shown in Fig.3.

5 Cross-layer Design Using Interval Type-2 Fuzzy Logic System

As we introduce in the preliminaries, the high BER means high packets loss rate. Requests for

resends will increase latency. For delay insensitive traffic requires a very low BER. And the MAC

later service time is important when we examine the performance of higher protocol layers. So we

could know BER and MAC layer service time will manage the packet transmission delay between

the mobile nodes. We are now ready to evaluate the packet transmission delay using interval type-2

fuzzy logic systems.

We predict packet transmission delay based on the following two antecedents:

1. Antecedent 1. BER.

2. Antecedent 2. MAC layer service time.

The consequent is depicted as the packet transmission delay. The linguistic variables used to

represent the BER and MAC layer service time were divided into three levels: low, moderate, and

high. The consequents - the packet transmission delay were divided into 5 levels, vert low, low,

11



Table 2: Mean and std values for ten segments and the entire logarithm of MAC layer service time,

and their normalized std.

MAC layer service time mean std

Segment 1 -1.1902 0.44295

Segment 2 -1.1929 0.44698

Segment 3 -1.1967 0.45237

Segment 4 -1.1959 0.44835

Segment 5 -1.1917 0.43598

Segment 6 -1.1924 0.44779

Segment 7 -1.1976 0.45687

Segment 8 -1.1996 0.45554

Segment 9 -1.1923 0.45068

Segment 10 -1.1997 0.462

Entire Traffic -1.1949 0.44981

Normalized std 0.0028746 0.016421

moderate, high and very high.

We designed questions such as:

IF BER is low and MAC layer service time is high, THEN the packet transmission delay is

So we need to set up 32 - 9 (because every antecedent has 3 fuzzy sub-sets, and there arx 2

antecedents) rules for this FLS. We summarized these rules in Table II.

We used Guassian membership functions (MFs) to represent the antecedents and the conse-

quent.

Fig.4 show the FLS application for the cross-layer design.
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Table 3: Fuzzy Rules and Consequent

Antecedent1 Antecedent2 Consequent

Low Low VeryLow

Low Moderate Low

Low High Moderate

Moderate Low Low

Moderate Moderate Moderate

Moderate High High

High Low Moderate

High Moderate High

High High VeryHigh

When a mobile node sends out a packet, it will first predict the packet transmission delay using

the FLS algorithm. After that, the node could adjust the transmission power according to the

predicted packet transmission delay. Therefore average delay, energy consumption and throughput

performances will change.

6 Simulations

We implemented the simulation model using the OPNET modeler. The simulation region is

300 x 300 meters. There were 12 mobile nodes in the simulation model, and the nodes were roaming

independently with variable ground speed between 0 to 10 meters per second. The mobility model

was called one-step Markov path model. The movement would change the distance between mobile

nodes. We assumed the collecting data distribution of the mobile node was exponential distribution

and the arriving interval was 0.2 second and the length of the packet is 512 bits.

For type-1 FLS, We chose Gaussian membership function as antecedents; for interval type-2
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Figure 4: FLS application for cross-layer design

FLS, we used Gaussian primary MF's with fixed mean and uncertain std for the antecedents. The

steepest decent algorithm was used to train all the parameters based on the 300 data sets. After

training, the rules were fixed, and we tested the FLS based on the remaining 300 data sets.

In Fig.5, we summarized the root-mean-square-errors (RMSE) between the estimated packet

transmission delay and the actual delay.

1 600
RMSE T [d(i) - f(i)] (11)

i=301

where d(i) was the actual packet transmission delay and f(i) was the estimated delay.

The simulation result shows that the interval type-2 FLS for packet transmission delay analysis

and prediction outforms the type-1 FLS.

In the following performance analysis, we assume we could know the actual transmission delay.

We just use it as a idea case and get the performance parameters as the bounds.

6.0.1 Average Latency

We used the average latency parameter to evaluate the network performance. Each packet was

labeled a timestamp when it was generated by the source sensor node. When its destination sensor
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Figure 5: The RMSE of packet transmission delay prediction for two FLS approaches

node received it, the time interval was the transmission delay.

K

Fig.6 showed the latency performance of the three algorithms. The type2 algorithm was better

than the typel algorithm. The type2 predictor could reduce the average delay by up to 20% than

typel predictor. And the idea case was the best performance among the three.

Figure 6: Average Delay for Three Algorithms

6.1 Energy Efficiency

It was not convenient to recharge the battery, so the energy efficiency was extremely important

for mobile ad hoc networks. In the wireless mobile ad hoc networks, we used the parameter: the

remaining energy to describe the energy efficiency.
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Figure 7: Remaining Energy for Three Algorithms

Fig.7 showed the remaining energy of the three algorithms. We assumed that the energy of

each sensor is 2.OJ and we adopted CSMA/CA protocol to solve the packets collision problem. If

a sensor node transmitted Num, packets (each packet cost 1 second) and receives Num, packets

(each packets also cost 1 second) and it was roaming in the network for Tm, we could get the

remaining energy Ej of this sensor node:

Ei-2.0"(3x10- 5 xTm,+1.2x10-3x1+6x10-4X1) (13)

Same as the average delay, for the performance of the energy consumption, the type2 algorithm

was better than the typel algorithm. The type2 predictor could reduce the energy consumption

by up to 21% than the typl predictor. The idea case was set as the low bound.

6.2 Networks Efficiency

The mobile ad hoc networks were used to collect data and transfer packets. The throughput of

packets transmitted was one of the parameters to evaluate the networks efficiency. In our simulation,

we assumed the collecting data distribution of the mobile node was Poisson distribution and the

arriving interval was 0.2 second.

Observing from Fig.8, the type2 algorithm was better than the typel algorithm. The type2

predictor could increase the throughput by up to 45% than the typl predictor. And the idea case

was set as the high bound.
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Figure 8: Throughput for Three Algorithms

We introduce the fuzzy logic system in the cross-layer design. Compare with other algorithms

for cross-layer design, the fuzzy method could be flexible and simpler to implement. We could

predict the packet transmission delay according to the information just from physical layer and

mac layer. So we have potential application advantage. We use the FLSs as the predictors and we

could control the transmission power according the outcomes of the predictors. Simulation results

show that the type2 algorithm is better than the typel algorithm. And we could set the idea case

as the performance bounds.

7 Conclusion

Cross-layer design is a effective method to improve the performance of the mobile ad hoc network.

We apply the fuzzy logic system to combine physical layer and data-link layer together. We select

BER and MAC layer service time as antecedents to analyze and predict the packet transmission

"delay. And we apply a type-1 FLS and an interval type-2 FLS for the packet transmission delay

analysis and prediction. Simulation result shows that the interval type-2 FLS for packet trans-

mission delay analysis and prediction outform the type-1 FLS. We use the FLSs as the predictors

and we could control the transmission power according the outcomes of the predictors. Simulation

results show that the type2 algorithm is better than the typel algorithm. And we could set the

idea case as the performance bounds.
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Abstract-Ultra wideband (UWB) technology offers unique to its high data rate, low radiated power, and accurate ranging
advantages for wireless communications: precise location-timing capability. Two different UWB communications systems -
capabilities, low power, low complexity, and low cost. No ex- impulse-based systems and multi-carrier systems - have been
isting wireless network successfully takes advantage of those
properties of this technology because of the lack of an efficient pursued recently. For low cost and low power applications,
medium access control (MAC) technology. In this paper, we impulse UWB (I-UWB) has several advantages over multi-
propose an energy-efficient MAC protocol: asynchronous MAC carrier systems including robustness to Rayleigh fading and
protocol for UVWB communications (A-MAC-UWB). Basing on simple, low power hardware.
the characteristics of UWB communication, we utilize virtual Multiantenna systems have been studied intensively in
MIMO technology to increase the data rate, and substitute space
diversity for time diversity to improve system performance in recent years due to their potential to dramatically increase
terms of energy efficiency and bit error rate (BER). Also, we the channel capacity in fading channels [3]. It has been
implement multiuser access through ALOHA scheme, instead of shown [3] that multi-input-multi-output (MIMO) systems can
mutual exclusion method such as TDMA and random access. For support higher data rates under the same transmit power budget
multiuser interference, we set a model to adaptively adjust the and bit-error-rate performance requirements as a single-input
data rate to ensure certain signal to noise ratio (SNR) at receiver
side, since a Shanoncapacity of a multipath fading additive white single-output (SISO) system. An alternative view is that for
Gaussian noise (AWGN) wideband channel is a linear function the same throughput requirement, MIMO systems require less
of SNR. For optimum design for power on/off phase duration, transmission energy than SISO systems. However, direct appli-
we consider the traffic whose arrival interval follows heavy tailed cation of multiantenna techniques to sensor node impractical
distribution, instead of Poisson distribution. Based on that, we due to the limited physical size of a sensor node which
acquire the probability density function (pdf) for power off phase typically can only support a single antenna. In resent years,
duration for our algorithm. Compared with our previous work,
we try to find a better method to trade off between data packet virtual MIMO conception have been proposed by Cui [4] and
latency and energy reservation. Jayaweera [5], which allow individual single-antenna nodes

to cooperate on information transmission and/or reception.
I. INTRODUCTION A cooperative MIMO system can be constructed such that

A wireless sensor network (WSN) can be thought as an energy-efficient MIMO schemes can be deployed.
ad hoc network consisting of sensor nodes linked by a In this paper, we propose an energy-efficient MAC protocol:
wireless medium to perform distributed sensing tasks. Recent asynchronous MAC protocol for UWB communications (A-
developments in integrated circuit technology have allowed the MAC-UWB). Basing on the characteristics of UWB commu-
construction of low-cost small sensor nodes with signal pro- nication, we utilize virtual MIMO technology to increase the
cessing and wireless communication capabilities. Distributed data rate, and substitute space diversity for time diversity to
WSNs have increasing potential applications because they hold improve system performance. The structure of corresponding
the potential to revolutionize many segments of our economy transmitter and receiver are given in this paper. Also, we
and life, from environmental monitoring and conservation, to implement multiuser access through ALOHA scheme, instead
manufacturing and business asset management, to automation of mutual exclusion method such as TDMA and random
in the transportation and health-care industries [1]. access. For multiuser interference, we set a model to adaptively

According to Federal Communications Commission (FCC), adjust the data rate to ensure certain SNR at receiver side,
an ultra-wideband (UWB) system is defined as any radio since a Shanoncapacity of a multipath fading additive white
system that has a 10-dB bandwidth larger than 20 percent Gaussian noise (AWGN) wideband channel is a linear function
of its center frequency, or has a 10-dB bandwidth equal to of SNR. For optimum design for power on/off phase duration,
or larger than 500 MHz [2]. To enable the deployment of we consider the traffic whose arrival interval follows heavy
UWB systems, FCC allocated an unlicensed frequency band tailed distribution, instead of Poisson distribution. Based on
3.1.10.6 GHz for indoor or hand-held UWB communication that, we acquire the probability density function (pdf) for
systems [2]. UWB is an attractive technology for WSNs due power off phase duration for our algorithm. Compared with



our previous work, we try to find a better method to trade off channel is a linear function of signal to noise ratio (SNR).
between data packet latency and energy reservation. That is:

The remainder of this paper is organized as follows. In next R = K x SNR (1)
section (Section III) we make a formulation'on the problems
covered in this paper. Assumption and modelling related to Thus, for a given desired bit-error rate on the link, an effi-

our algorithm is given in Section IV. Section V describe our cient wideband physical layer implementation should have a

A-MAC-UWB algorithm, linear rate function within the operational interval of SNRs.
Moreover UWB is flexible in the reconfiguration process of

II. RELATED WORK data rate and power, due to the availability of a number of
transmission parameters which can be tuned to better match

In contrast to typical WLAN protocols, MAC protocols the requirements of a data flow. Therefore, UWB systems can
designed for WSNs usually trade off performance (latency, support multiple access much better than narrowband systems.
throughput, fairness) for cost (energy efficiency, reduced
algorithmic complexity). The main idea of energy-efficient III. PROBLEM FORMULATION
MAC protocols for narrowband systems is that sensor nodes The biggest challenge for designers of WSNs is to develop
intelligently power off users that are not actively transmitting systems that will run unattended for years. This calls for not
or receiving packets. The goal is implementing informationexchnge aswel as eduingenegy onsuptin t exend only robust hardware and software, but also lasting energyexchange, as w ell as reducing energy consum ption to extend re o c s.H w v ,th cu en g n rai n f s n or od s sMC resources. However, the current generation of sensor nodes is
the lifetime of networks. Narrowband energy-efficient MAC battery powered, whose available energy is limited, and replac-
protocols for WSNs can be classified into three main cate- ing or recharging batteries, in many cases, may be impractical
gories according to the strategies applied for channel access: or uneconomical. Lifetime is a major constraint. Even though,

"* Contention-Based Protocols: 802.11 [6] standard is based future generations can be powered by ambient energy sources
on carrier sensing (CSMA) and collision detection (sunlight, vibrations, etc.) [21], the current provided is very
(through acknowledgements). low. Energy consumption is heavily constrained. From both

- Slotted Protocols: traffic-adaptive medium access perspectives, protocols and applications designed for WSNs
(TRAMA) [7] employs a traffic adaptive and distributed should be highly efficient and optimized in terms of energy.
election scheme to allocate the system time among Energy-efficient communication techniques typically focus
sensor nodes. Other TDMA-based energy-efficient MAC minimizing the transmission energy only, which is reasonable
protocols like EMACS, bit-map-assisted (BMA) and in long-range applications where the transmission energy
GANGS MAC protocols are described in [8], [9], [10]. dominant in the total energy consumption. However, in short-

"* TDMA-Based Protocols: S-MAC [11] is a low power range applications such as WSNs where the circuit energy
RTS-CTS protocol for WSNs inspired by PAMAS [12] consumption is comparable to or even dominates the trans-
and 802.11. T-MAC [13] improves on S-MAC's energy mission energy [4]. And Cui [4] claims that the traditional
usage by using a very short listening window at the belief that MIMO systems are more energy-efficient than SISO
beginning of each active period. B-MAC [14] provides system in Rayleigh-fading channel is misleading when both
a flexible interface to obtain ultra low power operation, the transmission energy and the circuit energy consumption
effective collision avoidance, and high channel utilization, are considered in short-range applications, except that con-

Multiple access communications employing pulsed UWB stellation size is optimized.
technologies has drawn significant research interest. The MAC In UWB WSNs, if using multiple access instead of mutual
should be specifically conceived for the UWB radio physical exclusion access methods, one main energy wasting source is
layer, and as such foresee and eventually optimize strategies idle for waiting for next arrival data packet, we call it inter-
for power sharing and management. Various multiple access packet idle listening, which is caused by burst traffic. Besides
schemes and their performance have been reported in the this, we found that there is another kind of idle listening for
literature [15] [16]. Time hopping (TH) has been found to be a UWB systems, we call it inter-symbol idle listening. As shown
good multiple access technique for pulsed UWB systems [16]. in Section IV-B, each bit is repeated N8 times, during each
Direct sequence (DS) spreading is also an attractive method frame duration (Tf) only one pulse is sent and the left time is
for multiple access in UWB systems. F. Cuomo et al. [17] idle for waiting for next pulse, and there are Nh bins during
outlined key issues to design a multi access scheme based on one frame time. In this case, for one information bit, the ratio
UWB. They selected a distributed mechanism to handle radio of actual transmission/receiption time to one bit duration is T
resource sharing, and presented a general framework of radio , and the ratio of inter-symbol idle time to one bit duration
resource sharing to the UWB wireless ad hoc network systems. is (Nh-.)T. The typical values for those key parameters are:
J. Ding et al [18] studied the impact of the channel acquisition Tf = 100ns, T, = 0.75ns, N8 = 100, and Nh = 100. Note
time with different MAC protocols: a centralized TDMA and that there is about 74.25% time is idle for one information bit
a distributed CSMA/CA. transmission.

Information-theoretic results in [19] and [20] show that Furthermore, compared with narrowband communication
a Shannoncapacity of a multipath fading AWGN wideband systems, UWB is low power consumption. The research in
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[10] points out that a bit rat of 1OOKpbs over 5 meters with "0" lit

no more than 1 mW power consumption. Therefore, saving
energy on circuit part is one of the most effective methods
for UWB system than for narrowband system. Hence, how I
to extend the superiority of virtual MIMO systems in terms I I I I I I I I
of energy efficiency down to very short distance for UWB ._____ --
systems is one of objects of this paper. Tf Tc

IV. ASSUMPTION AND MODELLING

A. Network Model Fig. 1. UWB physical layer with PPM, the model of Win-Scholtz [16]

A commonly encountered distributed wireless sensor net-
work model consists of a lead-sensor and a set of data collec-
tion nodes. In this model, a number of low-end data collection where E(T( is the transmitted energy per pulse for n - th
sensors are connected with a high-end data gathering node user at transmitter antenna. Note that the bit interval, or the
which may act as lead-sensor or a fusion center over a wireless bit duration, that is, the time used to transmit one bit Tb
link. In such networks, the data collection sensors are typically is: Tb = Ti. Compared with generic TH-PPM UJWB signal
subjected to strict energy constraints while the data gathering transmitters, such as the one used in Win-Scholtz physical
node is not. The data collection nodes collect data on a model [16], in which Tb = N8 T, if also introducing N,
physical phenomenon that is of interest and communicate them redundancy, our MIMO TH-PPM UWB transmitter improves
to the data gathering node over a wireless link which performs the data rate N. times, which is one of advantages introduced
required joint processing. Suppose a set of data collection by utilizing MIMO technology.
nodes (NT) (possibly close to each other) has data to be The signal received by i - th (i = 1, 2,... , NR) user's
sent to the data gathering node. All these sensors transmit antennas is z(') (t) at time t, written as follows:
their data simultaneously to the data gathering node as in NT

a conventional VBLAST system[22]. Which sets of nodes Z(0 (t) Ect( 1 (t)x(i)(t - .ri)) + w'(t) + 0)(t) (3)
can transmit simultaneously will be designed next section. ) =- +
We assume that there are NR - 1 number of local sensors
surrounding the data gathering node which are willing to assist where aj() (t) is the channel coefficient for the j - th transmit-
it in realizing a virtual receiver antenna array of size NR ter at i - th receiver. r-i) is the delay of the j - th transmitter
(including the data gathering node itself). Each of these NR t a r .
sensor nodes receive transmissions. The NR- 1 assisting nodes at i - th receiver. wi(t) is the multiuser interference. n.n (t)
quantize their received signal samples and re-transmit these is AWGN noise.
bits to the data gathering node. Combining (2) and (3), we drive that:

B. Physical Layer Model z(0 (t) - E3j V•TX' (t)p(t - (cj T- a .-- j ) +j (t)

The UWB physical model of the network on which the j=l
design of our protocol is based is discussed in this section. (4)
The most common and traditional way of emitting an UWB V. PROPOSED ASYNCHRONOUS MAC PROTOCOL FOR
signal is by radiating pulses that are very short in time. IR UWB COMMUNICATIONS (A-MAC-UWB) DESIGN
transmits extremely short pulses giving rise to wide spectral
occupation in the frequency domain (bandwidth from near A-MAC-UWB divides system time into four phases: TRFR-
dc to a few gigahertz). The way by which the information Phase, Schedule-Phase, On-Phase and Off-Phase (Fig. 2).
data symbols modulate the pulses may vary. Pulse Position * TRFR-Phase is preserved for normal nodes to exchange
Modulation (PPM) and Pulse Amplitude Modulation (PAM) Traffic-Rate & Failure-Rate (TRFR) messages and data
are commonly adopted modulation schemes [24] [25]. In packets;
addition to modulation and in order to shape the spectrum * Schedule-Phase is preserved for cluster heads to locally
of the generated signal, the data symbols are encoded using broadcast phase-switching schedules;
pseudorandom or pseudonise (PN) codes. Fig. 1 reports an e Off-Phase is preserved for all normal nodes to power off
example of transmission by two users, each characterized by their radios. In this phase, there is no communication, but
a TH code word. data storing and sensing may happen;
where Tf is the frame duration. T, is the bin duration. * On-Phase is preserved for all normal nodes to power on

The output x' (n = 1, 2,... NT) at n - th user's output their radios to carry on communication.
can be expressed as follows: In A-MAC-UWB, according to information collected from

normal nodes, cluster heads estimate the influence of clock
x n) (t) = - c - a(•)e) (2) drifts on communications and the capacity to buffer packets
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Z FR-Phase FR-Phase

",? Schedule-Phase _ _ heduee-Phase Since
_FK(k) = _k (10)

On-Phase IOff-Phase On-Phase Off-Phase IOn-PhaselOff-haseltek*

~ then
Schedule Broadcast Interval FTf, (tf,i) = tf,i(a - 1) (11)

Sak*B,

Fig. 2. Time Scheme Structure for A-MAC-UWB Since, within a cluster, there are multiple nodes which have

various traffic arrival rate, the duration for all nodes will not

within their region. Then cluster heads choose the power on/off be equal. If we let the Off-Phase duration for a whole cluster

duration and the interval for schedule broadcast. Finally, nodes Tf,tot equal to i-th user, that is Tf,tot = Tfi. Moreover, since

set up their own phase-switching schedules to power on their a new arrival to an idle system, rather than going into service

radios for carrying on communication and to power off their immediately, waits for the end of the vacation period, and

radios for saving energy alternately. arrivals are served following a first-come-first-in order. There-
fore, the longer Tf,tot is, the longer for data packets waiting

A. Essential Parameter Design at buffer for transmission is. We leverage the GI*/G/1 with
1) Off-Phase Duration (Tf): It is now recognized [26] [27] vacation modelto model our system. Through analysis, we try

that traffic in wired and wireless communication networks is to get the relationship between average waiting time (Tv4j) for
better described by heavy-tailed distributions than by Poisson, j - th user and T(f, tot), that is Wj = fj (Tf,tot).
Gaussian or other classical distributions with exponentially Based on this conclusion, we try to get the probability (pj)
decreasing tails. In this paper, we model network arrivals for data packets out of date for j-th when Off-Phase duration
as Pareto distribution, a heavy-tailed distribution, instead of equals to Tf,tot is given in (13).
Poisson distribution as in [28] did. The probability mass PW7 >_ W...} = 1 - FTf.... (f7'(W...)) (12)
function is given in (5). ~'= ~ - mx fst~~an)~

f(x) = ak'x-'-1 , 1 < a < 2, k > 0, x > k (5) Since Tf,tot = Tf,i, (13) is rewritten as follows:

and its cumulative distribution function is given by: Pij = P{fWij Ž WmaxI = 1 - FTf, (f- 1 (Wmax)) (13)

F(x) = 1 - ( k) (6)
S1( where pij is the data packets out of date probability for j - th

user when letting i-th user's Off-Phase duration for the whole
where k represents the smallest value the random variable can cluster.
take. For a system with a Off-Phase duration Tf,i and total data

In this case, we establish an embedded-Markov chain to packets out of date probability EJpj, we represent its objective
express the packet arrive process for each user. N(t) is the function as
number of data packets in buffer at time t. N,- stands for
the queue length when the n - th data packet arrival (the arg max J(Tf,i)= arg max{:3Tf, - -yEpij} (14)
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current arrival data packet not included). Even though the
queue length of each user does not own Markov property anymore, N•- n_> 0 forms a Markov chain, an embeded-Markov where /• and -y are systems parameters that respectively
morehNa-in. The 0arage arrivalinte alin, gin: embederepresent the "latency constant" and the "penalty constant"c Tand can be tuned to achieve the desired trade-off between

"1 = ak (7) maximizing energy reservation period and minimizing buffer
a - ( overflowing rate.

During Off-Phase, there are about (Tfi x Ai) data packets 2) On-Phase Duration (Tn): During On-Phase, normal
arrived at node i. We assume the buffer size for node i is nodes start to send data packets through competition. Users,
B,. Then the duration, denoted by ti, within which node i's who have data packets to send, access the channel to make
buffer can be fully filled with arrived data packets is given by communication. Competing sources are allowed to send con-
ti = -B. Considering the first criteria, Tf,i for node i should currently. Our A-MAC-UWB protocol does not use mutual
not longer than ti. In this algorithm, we let exclusion (as is commonly done by random access or TDMA

B, aiki protocols) but, in contrast, allows interference to occur and
Tf, ( = .--B-( ) (8) adapt to it. The detail on working process will be discussed in

Xi i - 1 the next part. One of the advantages for our algorithm is re-
We assume B, is a constant, ai = a for all users. While moving the overhead of control packets for carrier sensing for

ki follows a uniform distribution at range [0, k*]. Note that, avoiding collision, such as RTS/CTS for CSMA/CA scheme,
the cumulative density function for Tf,i is given: but also ensuring successful transmission.

FT_ (tf,) = PTfi tf, =FK (tf,i ( -1)) Based on our transmitter and receiver design, each informa-
(9) tion bit will be received out by NR nodes almost concurrently

4



during period Ts, the transmitted signal is given in (2). And Solving (16) for Rb,i we get
the estimation on receiving signals are done by combining A i(Tf,tot + Tn,tot)
all received signal on NR receiver nodes. The received signal Rb,i = (17)
at i - th user has be given in (4). In that equation, besides T.,t

the desired user's signal part, 0 (t) represents the multiple From other aspect of obtaining satisfied data successful
access interference (MAI) caused by other users, and n(i) (t) transmission rate to acquire data rate, that is Rtb,i for node i,
is the AWGN noise. we get Rtb,i = K x fl(Prb). We define the objective function

Our physical layer design scheme takes the advantages for Tf design is:
both of virtual MIMO and UWB technologies. Through us-
ing MIMO, we substitutes space diversity for time diversity U(T•,•ot) Z - R (18)
which is commonly used for traditional TH-PPM-UWB signal
generation, to carry out performance improvement task. More- Then the optimum task is shown in follows:
over, the diversity is increased from N5 to NT x NR. This argminU(Tn,tot) (19)
modification is inspired by the close dependence on high time
synchronization among users. In that case, common timescale ACKNOWLEDGEMENT
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Abstract-In this paper, we introduce a new method loops. It is hard to characterize the interaction at different
for packet transmission delay analysis and prediction in layers and joint optimization across layers may lead to
mobile ad hoc networks. We use fuzzy logic system (FLS) complex algorithm.
to coordinate physical layer and data link layer. We In this paper, we discuss one of the parameters for
demonstrate that a type-2 fuzzy membership functions
(MFs), i.e., the Gaussian MFs with uncertain variance is qOSt packet tram del And ourkalgorithmpis
most appropriate to model BER and MAC layer service quite different from all the previous works. We propose
time. Two FLSs: a singleton type-1 FLS and an interval to use the Fuzzy Logic System (FLS) for packet trans-
type-2 FLS are designed to predict the packet transmission mission delay analysis and prediction. We apply both a
delay based on the BER and MAC layer service time. singleton type-1 FLS and an interval type-2 FLS for the
Simulation result shows that the interval type-2 FLS analysis and prediction.
performs better than the type-1 FLS. The remainder of this paper is structured as following.

In section II, we introduce the preliminaries. In sec-
tion III, we make a overview of fuzzy logic systems.

The demand for Quality of Service (QoS) in mobile In section IV, we apply the FLS into the cross-layer
ad hoc networks is growing in a rapid speed. To enhance design. Simulation results and discussions are presented
the QoS, we consider the combination of physical layer in section V. In section VI, we conclude the paper.
and data-link layer together, a cross-layer approach. A
strict layered design is not flexible enough to cope with II. PRELIMINARIES
the dynamics of the mobile ad hoc networks [1]. Cross- A. IEEE 802.1 la OFDM PHY
layer design could introduce the layer interdependencies The physical layer is the interface between the wire-
to optimized overall network performance. The general less medium and the MAC [5]. The principle of OFDM
methodology of cross-layer design is to maintain the is to divide a high-speed binary signal to be transmitted
layered architecture, capture the important information over a number of low data-rate subcarriers. A key
that influence other layers, exchange the information feature of the IEEE 802.11 a PHY is to provide 8 PHY
between layers and implement adaptive protocols and modes with different modulation schemes and coding
algorithms at each layer to optimize the performance. rates, making the idea of link adaptation feasible and

Lots of previous works have focused on cross-layer important.
design for QoS provision. Liu [2] combine the AMC at
physical layer and ARQ at the data link layer. Ahn [3] B. IEEE 802.11 MAC
use the info from MAC layer to do rate control at net- The 802.11 MAC uses Carrier-Sense Multiple Access
work layer for supporting real-time and best effort traffic, with Collision Avoidance (CSMA/CA) to achieve au-
Akan [4] propose a new adaptive transport layer suite tomatic medium sharing between compatible stations.
including adaptive transport protocol and adaptive rate In CSMA/CA, a station senses the wireless medium to
control protocol based on the lower layer information. determine if it is idle before it starts transmission. If

However, cross-layer design can produce unintended the medium appears to be idle, the transmission may
interactions among protocols, such as an adaptation proceed, else the station will wait until the end of



the in-progress transmission. A station will ensure that the medium is sensed busy by each station due to colli-
the medium has been idle for the specified inter-frame sions. The MAC layer service time is the time interval
interval before attempting to transmit, from the time instant that a packet becomes the head of

Besides carrier sense and RTS/CTS mechanism, an the queue and starts to contend for transmission, to the
acknowledgment (ACK) frame will be sent by the re- time instant that either the packet is acknowledged for
ceiver upon successful reception of a data frame. Only a successful transmission or the packet is dropped. This
after receiving an ACK frame correctly, the transmitter time is important when we examine the performance of
assumes successful delivery of the corresponding data higher protocol layers.
frame. The sequence for a data transmission is: RTS-
CTS-DATA-ACK. E. Packet Transmission Delay

A mobile node will retransmit the data packet when The packet delay represents the time it took to send
finding failing transmission. Retransmission of a signal the packet between the transmitter and the next-hop
packet can achieve a certain probability of delivery, receiver, including the deferred time and the time to
There is a relationship between the probability of de- fully acknowledge the packet. The packet transmission
livery p and retransmission times n [6]: delay between the mobile nodes includes three parts: the

wireless channel transmission delay, the Physical/MAC
n = 1.451n 1 (1) layer transmission delay, and the queuing delay [8].

1-P Defining D as the distance between two nodes and
The IEEE 802.11 standard requires that a data frame is C as the light speed, the wireless channel transmission

discarded by the transmitter's MAC after certain number delay as:
of unsuccessful transmission attempts. According to the Delaych = D(2)
requirement of probability of delivery, we choose the (
minimum number of retransmission. The Physical/MAC layer transmission delay will be

When MAC layer acquires access to the channel, the decided by interaction of the transmitter and the receive
nodes will exchange the RTS-CTS-DATA-ACK packets. channel, the node density and the node traffic intensity
After the transmitters receive an ACK packet, a packet etc.
is transmitted successfully. In this paper, we assume that The queuing delay is decided by the mobile node I/O
there will be always best-effort traffic present that can system-processing rate, the subqueue length in the node.
be locally and rapidly rate controlled in an independent In order to make the system"stable", the rate at which
manner at each node to yield necessary low delays and node transfers packets intended for its destination must
stable throughputs. satisfy all nodes that the queuing lengths will not be

C Bit Error Rate infinite and the average delays will be bounded.

BER is the percentage of bits with errors divided F One-step Markov Path Model
by the total number of bits that have been transmitted, The mobile nodes are roaming independently with
received or processed over a given time period. It is a variable ground speed. The mobility model is called one-
measure of transmission quality. The high BER means step Markov path model [9]. The probability of moving
high packets loss rate. Requests for resends will increase in the same direction as the previous move is higher
latency. For delay insensitive traffic requiring a very low than other directions in this model, which means this
BER. model has memory. Fig.1 shows the probability of the

six directions.
D. MAC Layer Service Time

There are three basic processes when the MAC layer III. OVERVIEW OF INTERVAL TYPE-2 FuzzY LOGIC
transmits a packet [7]: the decrement process of the SYSTEMS
backoff timer, the successful packet transmission process Figure 2 showvs the structure of a type-2 FLS [10]. It
that takes a time period of T8,c and the packet collision is very similar to the structure of a type-1 FLS [11]. For
process that takes a time period of Toot. Here, T8 ., is the a type- 1 FLS, the output processing block only contains
random variable representing the period that the medium the defuzzifier. We assume that the reader is familiar
is sensed busy because of a successful transmission, and with type-I FLSs, so that here we focus only on the
Toot is the random variable representing the period that similarities and differences between the two FLSs.



.. T... This extended defuzzification gives a type-1 frizzy set.
Since this operation takes us from the type-2 output sets
of the FLS to a type-1 set, this operation was called
"type-reduction" and the type-reduced set so obtained
was called a "type-reduced set" [10]. To obtain a crisp
output from a type-2 FLS, we can defuzzify the type-
reduced set.

General type-2 FLSs are computationally intensive,
Fig. 1. One-step Markov Path Model because type-reduction is very intensive. Things simplify

T U Ia lot when secondary membership functions (MFs) are
interval sets (in this case, the secondary memberships are

RUlES I PROCESSING OUTUT either 0 or 1). When the secondary MFs are interval sets,
EFP [IJ 'FE the type-2 FLSs were called "interval type-2 FLSs". In

Xx [13], Liang and Mendel proposed the theory and design
RED CED of interval type-2 fuzzy logic systems (FLSs). They pro-T _ CESET

.... L--posed an efficient and simplified method to compute theSETS SETS

input and antecedent operations for interval type-2 FLSs,
Fig. 2. The structure of a type-2 FLS. In order to emphasize the one that is based on a general inference formula for
importance of the type-reduced set, we have shown two outputs for them. They introduced the concept of upper and lower
the type-2 FLS, the type-reduced set and the crisp defuzzified value, membership functions (MFs) and illustrate their efficient

inference method for the case of Gaussian primary MFs.
They also proposed a method for designing an interval

The fuzzifier maps the crisp input into a fuzzy set. type-2 FLS in which they tuned its parameters.
This fuzzy set can, in general, be a type-2 set. In an interval type-2 FLS with singleton fuzzification

In the type-1 case, we generally have "IF-THEN" and meet under minimum or product t-norm, the result
rules, where the lth rule has the form "H1 : IF x, is F11 of the input and antecedent operations, F1, is an interval

an 2i 1 -Id .. -ntpi 1 HN sG"wee
andxis F2 and.., andxis Fp,,THEN y is '",where: type-i set, i.e., F = [ft, f 1], where f and f simplify
xis are inputs; F s are antecedent sets (/ = 1,... ,p); y is to -
the output; and GUs are consequent sets. The distinction f' = 'PI(x) *.. * (xP) - (3)
between type-i and type-2 is associated with the nature -
of the membership functions, which is not important and
while forming rules; hence, the structure of the rules -(
remains exactly the same in the type-2 case, the only I= ft (xl)*...*f (xv) (4)
difference being that now some or all of the sets involved where xi (i 1
are of type-2; so, the lth rule in a type-2 FLS has the
form "RI : IF x, is F, and x2 is F2 and ... and xp is singleton.
p, THEN -4", In this paper, we use center-of-sets type-reduction,

, THEN is Gwhich can be expressed as:
In the type-2 case, the inference process is very

similar to that in type- 1. The inference engine combines r r
rules and gives a mapping from input type-2 fuzzy sets Ycos(Y',.. , yM, Fl,... ,FM) = [Y, Y,] ... I
to output type-2 fuzzy sets. To do this, one needs to (5)
find unions and intersections of type-2 sets, as well as where Ycos is an interval set determined by two end
compositions of type-2 relations. points, yj and yr; fi c P -[f',f-]; y' C yi i =

In a type-i FLS, the defuzzifier produces a crisp and Y' is the centroid of the type-2 interval consequent
output from the fuzzy set that is the output of the
inference engine, i.e., a type-0 (crisp) output is obtained set we; and, i = 1,.s.. M. Because Yeof is an interval

from a type-1 set. In the type-2 case, the output of the defuzzifit utput of an y, -, hence,

the inference engine is a type-2 set; so, "extended the defuzzified output of an interval type-2 FLS is

versions" (using Zadeh's Extension Principle [12]) of f(X) YL±Yr (6)
type-1 defuzzification methods was developed in [10]. 2



IV. MODELING BER AND MAC LAYER SERVICE 0.9

TIME WITH GAUSSIAN MEMBERSHIP FUNCTION 0.8

A. Analyzing and Modelling BER0.

Let p be the probability that bit is error in any given 0.
time. So p can be described as a random variable with 04

a known mean value Ea. 03

Now, at any given time the bit is error with probability 0
0.1-p and the bit is correct with probability 1-p. Since the

bit is either error or correct, the number of the bits it is 0 2 4 6 8 10

error(Eb) for a fixed length transmission bits is binomial
random variable. The length of the transmission bits is Fig. 3. Type-2 Gaussian MF with uncertain standard deviation

Nt, The probability that Eb takes any value x is :

B. Analyzing and Modelling MAC Layer Service Time
P{Eb = = CxoP (1-P)Nx ('7) Recent research by Zhai, kwon and Fang [7] discov-

As the number of the length of the transmission bits ered that the lognormal distribution could match for the
increase, the binomial distribution is approximated to a MAC layer service time. i.e., if the MAC layer service
normal distribution, with mean p = pNt and variance a.2 time for the packet i is si, then
= p(l-p)Nt.

In this paper, we set up fine membership func- log1 0 si 'Af(.;m, 
2) (8)

tions(MFs) for BER. From the original data of BER We, therefore, tried to model the logarithm of the
shown in Table I, we decomposed the whole data sets MAC layer service time, to see if a Gaussian MF can
into ten segments and computed the mean mi and std ci match its nature. We decomposed the whole data sets
of the BER of the ith segment, i = 1, 2,... , 10. We also into ten segments and computed the mean mi and std
computed the mean m and std a of the entire BER. To ai of the logarithm of the MAC layer service time of
see which value -mi or ai- varies more, we normalized the ith segment, i = 1, 2,... , 10. We also computed the
the mean and std of each segment using mi/m, and mean m and std a of the entire logarithm of the MAC
-i/lo, and we then computed the std of their normalized layer service time. To see which value -mi or ai- varies

values, orn, and Ustd. more, we normalized the mean and std of each segment

TABLE I using mi/m, and ci/ca, and we then computed the std

MEAN AND STD VALUES FOR TEN SEGMENTS AND THE ENTIRE of their normalized values, o-rn and 9,td.

BER, AND THEIR NORMALIZED STD. TABLE II

MEAN AND STD VALUES FOR TEN SEGMENTS AND THE ENTIREBER mean stdSeg 1ean 0.d.0 LOGARITHM OF MAC LAYER SERVICE TIME, AND THEIRSegment 1 0.016613 0.033315

Segment 2 0.015618 0.027857 NORMALIZED STD,
S e g m e n t 3 0 .0 1 5 5 2 8 0 .0 1 7 4 0 1 M A C l a e r s e vie_ i mm a ns t
Segment 4 0.016206 0.02107 MAC layer service time mean std
Segment 5 0.015721 0.017148 Segment 1 -1.1902 0.44295
Segment 6 0.016298 0.029309 Segment 2 -1.1929 0.44698
Segment 7 0.017062 0.037428 Segment 3 -1.1967 0.45237
Segment 8 0.016253 0.022871 Segment 4 -1.1959 0.44835Segment 9 0.016448 0.023194 Segment 5 -1.1917 0.43598
Segment 10 0.016237 0.020675 Segment 6 -1.1924 0.44779
Entire Traffic 0.016198 0.025829 Segment 7 -1.1976 0.45687
Normalized std 0.029161 0.25824 Segment 8 -1.1996 0.45554

Segment 9 -1.1923 0.45068

Segment 10 -1.1997 0.462
As we see from the last row of Tables I,,c-r <« Ostd. Entire Traffic -1.1949 0.44981

Normalized std 0.0028746 0.016421
We conclude, therefore, that if the BER of each segment
(short range)are Gaussian with uncertain standard devia-
tion. One example of type-2 Gaussian MF with uncertain As we see from the last row of Tables II, c-n < cr-td.
standard deviation is shown in Fig.3. We conclude, therefore, that if the logarithm of MAC



layer service time of each segment (short range)are Fig.4 show the FLS application for the cross-layer
Gaussian with uncertain standard deviation, as shown in design.
Fig.3.

V. CROSS-LAYER DESIGN USING INTERVAL TYPE-2

FuzzY LOGIC SYSTEM Real Time Best-Effort

As we introduce in the preliminaries, the high BER se.... s-..rt
means high packets loss rate. Requests for resends will Packet Transmisson lay

increase latency. For delay insensitive traffic requires Buffer

a very low BER. And the MAC later service time is
important when we examine the performance of higher MAC C -

protocol layers. So we could know BER and MAC layer ACLayerSerce Time

service time will manage the packet transmission delay
between the mobile nodes. We are now ready to evaluate
the packet transmission delay using interval type-2 fuzzy
logic systems.

We predict packet transmission delay based on the Fig. 4. FLS application for cross-layer design
following two antecedents:1) Antecedent 1. BER. When a mobile node sends out a packet, it will first

2) Antecedent 2. MAC layer service time. predict the packet transmission delay using the FLS
algorithm. After that, the node could choose to send the

The consequent is depicted as the packet transmission real-time service or not for the real-time service need
delay. The linguistic variables used to represent the BER low delay requirement.
and MAC layer service time were divided into three
levels: low, moderate, and high. The consequents - the VI. SIMULATIONS
packet transmission delay were divided into 5 levels, vert We implemented the simulation model using the OP-
low, low, moderate, high and very high. NET modeler. The simulation region is 300 x 300 meters.

We designed questions such as: There were 12 mobile nodes in the simulation model,

IF BER is low and MAC layer service time is high, and the nodes were roaming independently with variable
THEN the packet transmission delay is ground speed between 0 to 10 meters per second. The

mobility model was called one-step Markov path model.
The movement would change the distance between mo-

So we need to set up 32 - 9 (because every antecedent bile nodes. We assumed the collecting data distribution
has 3 fuzzy sub-sets, and there are 2 antecedents) rules of the mobile node was exponential distribution and the
for this FLS. We summarized these rules in Table II. arriving interval was 0.2 second and the length of the

TABLE III packet is 512 bits.

Fuzzy RULES AND CONSEQUENT Because data communications in the mobile networks
had trimming constraints, it was important to design

Antecedentl Antecedent2 Consequent the network algorithm to meet a kind of end-end dead-
Low Low VeryLow line [14]. We used the packet transmission delay to
Low Moderate Low
Low High Moderate evaluate the network performance.

Moderate Low Low Each packet was labeled a timestamp when it was
Moderate Moderate Moderate generated by the source mobile node. When its destina-
Moderate High High tion mobile node received it, the time interval was the

High Low Moderate transmission delay.
High Moderate High
High High VeryHigh For type-1 FLS, We chose Gaussian membership

function as antecedents; for interval type-2 FLS, we used
Gaussian primary MF's with fixed mean and uncertain

We used Guassian membership functions (MFs) to std for the antecedents. The steepest decent algorithm
represent the antecedents and the consequent. was used to train all the parameters based on the 300



IntemW t-- FLS delay analysis and prediction. Simulation result shows

that the interval type-2 FLS for packet transmission delay
analysis and prediction outform the type-1 FLS.
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Abstract-In this paper, we address a fundamental the possible distance of its first-hop neighbors is {d},
problem in Wireless Sensor Networks, how many hops the possible distances of its second-hop neighbors are
does it take for a packet to be relayed for a given distance? {V\d, 2d} and so on. Generally, the possible distances
For a deterministic topology, this question reduces to a of its nth-hop neighbors are { (n - i)2 + i 2d, i =
simple geometry problem. However, a statistical study 0, 1, 2,... , [n/2]}, where [n/2] is the smallest integer
is needed for randomly deployed WSNs. We propose a
Maximum Likelihood decision based on the joint pdf of not less than n/2. If we compare the given distance
(H, n), which is also derived in this paper. Since the with these distances, the required number of hops can be
solution is not closed-form, we also propose an attenuated easily found. For some given distance, there could be two
Gaussian approximation for the joint pdf. We show that the solutions, such as (8- 1)2 + 12 (10-5)2 +(10-5)2 =
approximation visibly simplifies the decision process and 50, then we have to select the number of hops with higher
the error analysis. The latency and energy consumption probability. For geographic approach, such conflicts can
estimation are also included as application examples. be easily solved with loss of accuracy. Thus, geographic

I. INTRODUCTION approach is more efficient and accurate than statistical
approach on deterministic topology.

The recent advances in MEMS, embedded systems
and wireless communications enable the realization and .

deployment of wireless sensor networks (WSN), which
consist of a large number of densely deployed and self-
organized sensor nodes. The potential applications of 1. 0..

WSN, such as environment monitor, often emphasize . . . . .
the importance of location information. Accordingly
geographic routing [1] was proposed to handle such
requirement. Most likely, a packet is not routed to
a specific node, but a given location. An interesting ..
question arises as "how many hops does it take to reach a • � - ,.

given location?" The prediction of the number of hops is
important not only in itself but also in helping estimating Fig. 1. The nodes in a square grid placement. Only nodes within 4

the latency and energy cost, which are both important to hops are shown.
the viability of WSN.

The question could become very simple if the sensor However, if sensor nodes are deployed in a random
nodes are manually placed. For example, suppose sensor fashion, which is the case for most potential application,
nodes are place in a square grid with separation of d. Ob- the answer is beyond the reach of simple geometry.
viously, the connectivity depends on the comparison of The stochastic nature of the random deployment calls
d and the transmission range R. Suppose d < R < v-2id, for a statistical study. A natural and obvious estimation
this is simply a 4-connectivity network. For any node, would be dividing the distance by the average inter-



node distance (i.e., the average single-hop distance). or sample set, is symmetric if it looks the same to the
However, such estimation may be unable to provide left and right of the center point.
the required accuracy. A probabilistic study is needed Definition 1: [5] For a given sample set X,
here, that is, finding f(Hld), where H is the number of
hops. Although the question raised here is not directly m3 = ,(X - 2 ) 3/n, (4)

addressed before, a mirror problem, finding f(djh), has m2 = E,(X - X)2 /n, (5)
been well studied. In [2], Hou and Li studied the 2- where X is the sample mean of X, and n is the size
D Poisson distribution to find a optimal transmission

range. They found that the hop-distance distribution is of X. Then a sample estimate of skewness coefficient is

determined not only by node density and transmission given by m3
range but also by the routing strategy. They showed 91 3-- (6)

m2

results for three routing strategies, Most Forward with Skewness is zero for a symmetric distribution. Positive
Fixed Radius, Nearest with Forward Progress, and Most skewness indicates right skewness and negative indicates
Forward with Variable Radius. Cheng and Robertazzi in left.
[3] studied the one-dimension Poisson point and found Kurtosis is a measure of whether the data are peaked
the pdf of ri as or flat relative to a normal distribution.

Ae-X(R-r,) Definition 2: [5] A sample estimate of kurtosis for a
fr,(ri) = -e-X(R-r',-)' (1) sample set X is given by

where R is the transmission range, A is the node density, 92 = m4/m2 - 3, (7)
ri is the distance from the source to a ith-hop point and where m4 = E(X - X)4/n is the fourth-order moment
ri is related to re, by of X about its mean.

re, + ri = R. (2) Skewness and kurtosis is useful in determining
whether a sample set is normal. Note that the skewness

The pdf of re, is also obtained, and kurtosis of a normal distribution are both zero;

(re-r, ( significant skewness and kurtosis clearly indicate that
f(r) = 1 - r,) (3) data are not normal.

Obviously, the distribution of ri depends on previous III. THE NUMBER OF HOPS PRECTION
rj, j < i. They also pointed out the 2-D Poisson point A. Problem Formulation
distribution is analogous to the 1-D case, replacing the We make the following assumptions.
length of the segment by the area of the range.

Vural and Ekici reexamined the study under the sensor i the nodesare dep loye at random
networks circumstances in [4], and gave the mean and is, the node distribution follows 2D Poisson random
variance of multi-hop distance. They also proposed to process. Thus, the probability of "there is no node
approximate the multi-hop distance using Gaussian.

The rest of this paper is organized as follows. We Pr(No nodes in A) = e- (8)
provide some preliminaries on skewness and kurtosis in
Sectionsect:Preliminaries. The number of hops predica- where A is the density of nodes.
tion problem is addressed and solved in Section III. Since - The distance from the source to the destination d is
this problem has no closed-form solution, we propose known, which is common in geographic routing.
an attenuated Gaussian approximation and show how to * Neither of the source and destination is close to the
simplify the error analysis in Section IV. An application border. This assumption holds true for most of the
example is shown in Section V. Section VI concludes nodes if the network size is large enough.
this paper. The problem of interest is to find the number of hops,

denoted H needed to reach a specific destination r from a
11. PRELIMINARIES :SKEWNESS AND KURTOSIS given source node. We can make a Maximum Likelihood
In this section, we provide some preliminaries on sta- (ML) decision,

tistical methods [5]. Skewness is a measure of symmetry,
or more precisely, the lack of symmetry. A distribution, maH

2



C onsidering f H r - f(H , r) ( 0
f(H~~r) f(r) (0

the decision rule can be translated into

Hrzarg f(H, r), (11)
max

where f (H, r) is also called objective function. In the
next subsection, we are concerned with deriving p(H, r).
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Theoretically, we can take derivative of (20) with 6.37(10))

respect to r to obtain the objective function, use (11) to
decide the most likely H given r and give the probability approach the normal when H increases. Table I lists
of error for such a decisiof. However, (20) is awkward the first-, second-, third- and fourth-order statistics of
to evaluate and the computational cost could limit the f (H, r). The skewness and kurtosis clearly satisfy the
applicability of such a decision .scheme. Gaussianity condition within tolerance of error. Thus,

IV. ATTENUATED GAUSSIAN APPROXIMATION the objective function can be approximated by

TABLE I f(H = n, rn) = aoJ/(mn, on)

STATISTICS OF f(H = n, rn), n>• 3 nY2 " -- i'
- - e (22)

Number of Hops Mean Std Skewness Kurtosis where a is the equivalent attenuation base, Mn and un
1 19.991 7.0651 -0.57471 -0.58389
2 45.132 7.8365 -0.16958 -1.0763 are the mean and standard deviation(std), respectively.
3 72.01 8.2129 -0.10761 -1.0332 The specific values of these parameters can be evaluated
4 99.45 8.391 -0.07938 -0.97857 from (20) numerically or estimated from simulations.
5 127.14 8.5323 -0.06445 -0.93104
6 154.96 8.6147 -0.05341 -0.9004 Observe Table I, for large n, the joint pdf of (H, r) has
7 182.68 8.573 -0.07738 -0.91687 following properties,

1) arn ; orn-1, which means the neighboring joint
pdf's have similar spread.

Since (20) is awkward to evaluate even using numer- 2) m v s sp w h a ej

ical methods, we use histograms collected from Monte pf a en ly spaced.

Carlo simulations as substitute to the joint pdf. All the 3) 3 < - < 5, which means the overlap

simulation data are collected from such a scenario that 3
between the neighboring joint pdf's is small but

N sensor nodes were uniformly distributed in a circular no t neigi. srule o f t s Q(a) is

region of radius of 300 meters. For convenience, polar considered relatively small and Q(5) is regarded

coordinates were used. The source node was placed at n elel)
negligible .)

(0, 0). The transmission range was set as R meters. For 4) M-Mýý2 > 5, which means the overlap between
each setting of (N, R), we ran 300 simulations, in each •
of which all nodes are re-deployed at random. And the the non-neighboring joint pdf's is negligible.

node density is given by r 5) a < 1. For large density A, a -- 1. Along with
Property 1, this tell us that the neighboring joint

A = N (21) pdf's have nearly identical shape.
-7rR2 As shown in the following discussion, these properties

The histograms of f(H, r) are plotted in Fig. 5, largely simplify the decision rule and the error analysis.
which clearly shows that the joint distribution of (H, r) Another interesting observation, besides these properties,
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is that the following equations do not stand true. is negligible. Substitute (22) into (29), we obtain the
decision boundary d, between the regions H = n and

S= nml (23) H=n+l.
mn = nR (24) B + /B 2 ±+AC)
mn = (n- 1)R+R/2 (25) d =A

Although these equations sound plausible, they all give A = -n+1 _ on
visible errors. The aforementioned estimator [r/R] + 1 B = mna2+l - mn+la2

for H, though widely used, is not good in the new light C 2 2 _ m2 +2 2 2
shed by this study. However, Property 2 does tell us the n mnur+- n+l n 2°'n°'+ln c (30)
increment for mn is constant, if denoted by A, Using Property 1,

mn = m, + (n - 1)A (26) m2+ 1 _r2o_20n2 ( 31
dn = n+ o,,Ia(31)

We showed in [7] that ml = 2/3R, irrelevant to the node 2(mn+i - Mn)
density. Although A is a function of A and R, A is often For large density A, Property 5 is applicable, (30) sim-
regarded constant for a specific application and R varies plifies to
in a short range, thus, we can safely expect A = aR, 20 n + l 2+lrn

where a is a constant, for example, a = 0.9 for the data dn 2 2 (32)
in Table I. In summary, the following empirical equation an2 + O'n+l

stands for most application for WSN. Applying Property 1 to (32),

mn = R(2 + (n - 1)a) (27) dn = mn + mn+1 (33)
2

The above results about the constant increment of mean If we use the empirical equation (27),
hop-distance is used in Section V-B for energy consump- 2 1
tion estimation. dn = -R + (n - -)aR (34)

A. Decision Boundaries No matter which approximate solution we choose for dn,

i , the decision rule is given by

I IH I I H_ n+1SIr ;ý d,. (35)

I [In other words,

we decide H = ft if dfi- 1 < r < dil, (36)

d,, d. which is equivalent to

Fig. 6. Gaussian Approximation. n =+ + 1. (37)
aR +2 .(7

Following (11), we decide H given r using the fol- B. Error Performance Analysis
lowing rule. For out decision rule, a decision error occurs when

H = argmaxf (H, r) (28) H = n : ft. Thus, the probability of error with a specific

Observe the f(Hn, rn) in Fig. 6, the decision is needed r is
only between neighboring H, that is, p(E, r) = Ef(n, r). (38)

n n52fl
f(H =n, r) <> f(H =n+l1, r). (29)n+1 The total probability of error is obtained by integrating

This is because, for a specific value of r, there are only (38) over all possible r.

two Hn with dominating f(H = n + 1, r), compared (
to which f(H = n + 1,r) for other values of Hn p(e) =]p(e,r)dr (39)
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According to Property 4, only f(n -1,r) and f(n+ 1,r)
could have outstanding value over the decision region
[dn- 1 , dn]. - "'"

00 d,

p(W) ,f (n - 1,r) + f (n + 1,r)dr Fig. 7. Time Model.

oEan-1 IQ(dn' 1 - rn-1) _ Q(dn - rn--)] is negligible. Shown in Fig. 7, given the end-to-end

n=2 'n-1 On-1 distance r, we can find the required number of hops

+ovn+l[Q(mn+l - dn) Q(mn+l - dn-1)] H = hl according to (35), thus, a good estimator of the
0Un+1 0`n+1 total latency of a 1-bit message is

(40) l[Tt .+ (hl - 1)(Tt .+ Tr .) + T ,.] (44)

Note that = lhi(Tt. + Trx) (45)
dn - M 1 dn- 1 - Mn-1

0.n-1 0.n-1 B. Energy Consumption Estimation
dn - dn-1 >> (41) The following model is adopted from [8] where per-

»n-1 fect power control is assumed. To transmit 1 bits over

therefore, Q(dn ) is negligible compared to distance d, the sender's radio expends

(40) ). Similarly, is negligible. ElEejec + lefsd2  d < do (46)
, ... 0.a+1 &, E(1, d) = _1,ee + Iempd4 d < do (6

(40) s approximated by lEjc + lempd 4  d> do

3 QM3 - d2) + [ n-lQ(dn -in-I) and the receiver's radio expendsp(e) Pý a Q 3 ) E ' -n"3 n=3 E , 1

+±&n+lQ(mn+l - dn)] Er(, d) = 1 ,6100. (47)

0`n+1 0Eeiec is the unit energy consumed by the electronics to
-d 2 -Mm - process one bit of message, Cfs and Emp are the amplifier= 2Q( - ) + Ean[Q(_n an dn-1)

n=[ n=3 factor for free-space and multi-path models, respectively,

+Qdn - and do is the reference distance to determine which

-mn )model to use. The values of these communication energy

(42) parameters are set as in Table II.

Substituting an appropriate solution of dn into (42) TABLE II

would give us the probability of error within required ENERGY CONSUMPTON PARAMETERS

accuracy. For example, if we choose (33), Name Value

00 do 86.2m
Pn=3 a2 Q( -U2 ) + Ea n 2"~n - EMi 50ec n J/bit

3 EDA 5nrJ/bit

SmQn+l - in Cfs lOpJ/bit/ml2

-Q -29n 6_)]€, O.O01_3pJ/_bit`/m4T

(43)

V. APPLICATION EXAMPLES Let sn denote the single-hop distance from the (n -
1)th-hop to the nth-hop. Obviously, Sn < R. In our ex-

A. Latency Estimation perimental setting, R = 30m < do so that the free space
Suppose it takes T, for a sensor node to receive model is always used. This agrees well with most ap-

1 bit of message and Tt. to transmit. Considering the plications, in which multi-hop short-range transmission
transmission range in sensor networks is usually short is preferred to avoid the exponential increase in energy
compared to the light speed, the propagation time Tpr consumption for long-range transmission. Naturally, the

6



end-to-end energy consumption for sending I bits over VI. CONCLUSION

distance r is given by To predict the number of hops H needed to reach a

ft given distance r in randomly deployed sensor networks,

Etotai(l,r) = Z{Etx(l,r) + Erx(l)} we proposed a ML decision based on the joint pdf of

1 (H, n), which was also derived in this paper. Since
ft the solution is not closed-form, we also proposed an

lZ--{Eelec + efss2 + Eeiec}, (48) attenuated Gaussian approximation for the joint pdf.
1 We show that the approximation visibly simplifies the

where ft is the decision result for given r. On the average, decision process and the error analysis. The latency
and energy consumption estimation are also included as

[2 4 application examples.
Etotl~lr) 2h~ezCf+•sEyE[s~,] (49)

Etota (1, r) 2 ftEeiec + E nACKNOWLEDGMENT
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Abstract-We model the end-to-end distance for given hops the mean distance-dependent value.
in Wireless Sensor Networks in this paper. We derive that the
single-hop distance follows the distribution 2r/R 2, where R is
the transmission range. The end-to-end distance shows beta PL(d)[dB] = PL(d)[dB] + Xc, (2)
distribution for two hops, and approaches Gaussian distribution
when the number of hops is beyond three. As an application
example, we propose Statistical Distance Estimation, which shows where X, is a zero-mean Gaussian distributed random variable
less distance error than Hop-TERRAIN and APS (Ad hoc (in dB) with standard deviation u (also in dB). The log-normal
Positioning System). Our results are also applicable to other
applications for Wireless Sensor Networks. shadowing is the main source of distance error for received-

signal-strength-based ranging methods. The values of n and
I. INTRODUCTION AND MOTIVATION u are often estimated empirically, for example, n could vary

from 2 to 10 for different environments, and typical value of
In Wireless Sensor Networks (WSN), knowledge of node a in urban area is around 10 dBs.

location is often required in many applications. The examples
include events report, target tracking, geographical routing, Due to the log-normal shadowing, the RSS-based ranging
and coverage evaluation. Generally, the distances from a node could be very rough, especially indoors. For example, the
with unknown location to several anchor nodes are estimated, median localization error of commodity 802.11 technology
and then a multilateration is applied to estimate the node is lOft [3], such accuracy may be achieved by alternative
location. Distance is often estimated based on received signal deniques, for example, exploiting the density of sensor
strength, time of arrival (TOA), time difference of arrival deployment to estimate distance between nodes. Since the
(TDOA) or angle of arrival [1]. The angle-of-arrival based sensor nodes are over-densely deployed, the distance between
ranging requires directive antennas or arrays, which is not the noeresort an te vrinc o su tae is alo
suitable for most microsensors. Similarly, measuring time of small. Therefore, it is quite promising to use the end-to-end
flight requires timing device with satisfactory resolution like distance to obtain distance estimation [4], [5].
in GPS. Although TDOA needs much less resolution, it often For example, both APS [4] and Hop-TERRAIN [6] find the
requires extra acoustic or ultrasound emission, which comes number of hops from a node to each of the anchors and then
with higher price, larger size and more energy consumption, all multiplie this hop count by a shared metric (average single-
seeming impractical for microsensors. Thus, most technically hop distance) to estimate the range between the node and
available ranging is based on received signal strength; in fact, each anchor. The known positions of anchor nodes and these
RSSI (Received Signal Strength Indication) is widely used in computed ranges are then used to perform a triangulation to
wireless communications to provide distance estimation. obtain estimated node positions. A further refinement phase is

The underlying observation is that the average large-scale proposed in [6], which uses least squares on local computation.
path loss can be expressed as a function of distance by using However, as we show later, the distance does not increase lin-
a path loss exponent, n [2]. early with the number of hops. Therefore, a better knowledge

about the distribution of end-to-end distance for given number

PL(d) = PL(do)(-)n (1) of hops could cast new light on distance estimation.
do Geometrical probabilistic study on randomly distributed

where n is the path loss exponent, which indicates the rate at nodes may date back to centuries ago. More recent studies in-
which the path loss increases with distance, do is the close- dlude [7], which inspected a stochastic modeling of broadcast
in reference distance, which is determined from measurement percolation in one-dimension and obtain the pdf of the hop-
close to the transmitter, and d is the distance from the source distance based on Poisson node distribution [8]. Vural and
to the receiving point. Measurements have also shown that at Ekici [9] reexamined this problem for WSN, and proposed
any value of d, the path loss PL(d) at a particular location Gaussian approximations for multi-hop end-to-end distance.
is random and distributed log-normally (normal in dB) about In these studies, the following equation is widely cited as the



pdf for single-hop distance on a line [9]. B. Chi-Square Test

SAe-),r' Chi-square test is widely used to determine the goodness of
f(r.) = 1 - e-A\(R-r•'-)' (3) fit of a distribution to a set of experimental data. It works as

follows:
where A is the node density and R is the transmission range.

However, these studies are based on farthest delivery, that . 1. Partition the sample space into the union of K disjoint

is, only the farthest node in the desired direction within the intervals.

transmission range would relay the beacon packets. In [7], the * 2. Compute the probability bk that an outcome falls in the

locations of nodes are known so that the farthest node could kth interval under the postulated distribution. The mk =

be chosen as the next hop. When we plan to exploit node nbk is the expected number of outcomes that fall in the

distribution to estimate distance between nodes, we cannot kth interval in n repetitions of the experiment.

guarantee the beacon packets are relayed in such a fashion, * 3. The chi-square statistic is defined as the weighted

because it is impossible for any nodes to have such location difference between the observed number of outcomes,

information a priori. In fact, routing does not necessarily Nk, that fall in the kth interval, and the expected number

choose the farthest node for reasons such as energy efficiency, ink. 2

minimizing interference, robustness and so forth. A new study D2 
= EK=1 (N - m) (8)

must be carried out in the background of distance estimation. Mk

The rest of this paper is organized as follow. Section II pro- * 4. The hypothesis is rejected if D2 > t,, where ta
vides some preliminaries for statistical analysis. We model the is a threshold determined by a given significance level.
single-hop distance and show that the derivation for higher-hop Otherwise, the fit is considered good.
end-to-end distance is beyond practical complexity in Section
III. Computer simulations and analysis are presented in Section III. MODELING END-TO-END DISTANCE FOR GIVEN

IV. In Section V, based on the knowledge of hop-distance NUMBER OF HoPs

distribution, we propose Statistical Distance Estimation (SDE), A. Problem Formulation
independent of ranging techniques. Section VI concludes this We assume a general beacon scenario, in which anchors
paper. sends out beacon packets informing other nodes about

II. PRELIMINARIES their locations. These beacon packets are also relayed so

In this section, we provide some preliminaries on statistical that nodes outside the anchors' transmission range could

methods [10]. also have knowledge about their locations. Nonetheless,
clarifications about several terms are necessary, because

A. Skewness and Kurtosis they have been used in a wide variety of senses.

Skewness is a measure of symmetry, or more precisely, the Firstly, our study on end-to-end distance for given number
lack of symmetry. A distribution, or sample set, is symmetric of hops is based on local coordinate system, which
if it looks the same to the left and right of the center point, could be translated into a global coordinate system if

Definition 1: [10] For a given sample set X, enough nodes in the local coordinate system have known
M3 = -(X- X)3/n, (4) global coordinates. In previous research, anchors refer

to beacons, whose locations are known and broadcast to

in2 = E(X - kf) 2 /n, (5) other nodes. However, in our study, an anchor is simply

where X is the sample mean of X, and n is the size of X. a specific node used in establishing the local coordinate
Then a sample estimate of skewness coefficient is given by system. An anchor could have global coordinates or not,

M3 which is of no interest to our study. Therefore, our
g1 2. study is applicable to both anchor-based and anchor-free

Skewness is zero for a symmetric distribution. Positive skew- approaches.
ness indicates right skewness and negative indicates left. Secondly, we assume the beacon packets are distributed

Kurtosis is a measure of whether the data are peaked or flat in an ad hoe fashion. Although better routing, such as
relative to a normal distribution, geographic routing, are proposed for WSN, they are not

Definition 2: [10] A sample estimate of kurtosis for a suitable for relaying beacon packets, because during this

sample set X is given by phase, most nodes have no knowledge about locations
of their own and neighbors'. Under such circumstances,

92 = m4/M 2 - 3, (7) we have to assume the beacon packets are simply flooded
where M 4 = E(X - .k) 4/n is the fourth-order moment of X throughout the sensor network, except that nodes can only
about its mean. relay the beacon packets incoming with least number of

Skewness and kurtosis is useful in determining whether a hops and discard those via more hops.
sample set is normal. Note that the skewness and kurtosis of Suppose the sensor nodes are placed on a plane at random
a normal distribution are both zero; significant skewness and at an average density of A nodes per square meters. Let
kurtosis clearly indicate that data are not normal. N(A) be the number of nodes in area A, it can be shown

2
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Fig. 1. Uniform node distribution. 
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VAR[silHopi] = E[(si)2] - E 2[si]

that N(A) is a two-dimensional Poisson point process R f s2 -ds -

with density A. One property of the Poisson process is that R29

if the number of nodes occurring in the area A is N, then - (12)
the individual outcomes are distributed independently and 18
uniformly in the area A. That is, if N nodes are placed (11) and (12) show that the expected value and variance
at random in the area A, then the probability of a specific of single-hop distance is solely determined by the trans-
node in the subarea B is B/A, given B is included by mission range R and irrelevant to the node distribution
A. density A. This is due to the uniform node distribution;
Assume the area A is large enough and none of the anchor no matter how large the density could be, it would not
nodes is near the border. Without loss of generality, we give any bias to E[sx Hop1 ] and VAR[si Hopil].
center the polar coordinates at an arbitrary anchor node
(Fig.1). This node could communicate directly with any C. Two-Hop Case
other nodes within the transmission range, say R. The
problem of interest is to find the distance from a specific
node to the anchor given this node is within i hops from
the anchor. The definitions of variables we are working
with are listed in Table I. Note that the event Hopi can

TABLE I

DEFINITION OF VARIABLES

Variable Definition
Fj = (ri, O) the polar coordinates of the i-hop node

si the distance from the anchor to the i-hop
node

ti the distance from the (i - 1)-hop node to the
i-hop node

Hop i the event "the specific node is within i hop, Fig. 2. Two hops.

but beyond i - 1 hops from the anchor."

Consider the two-hop case shown in Fig. 2. The distribu-

also be described as "the minimum number of hops from tion of sl,which is equal to ti, is given in (9). Conditional

the anchor to the specific node is i". on the value of SI, the cdf for t2 is
B

B. Single-Hop Case P(t 2 < tjsiIHop2) R 2  (13)

Consider the first hop case, the conditional cdf can be where B is the area of the region inside the circle of
expressed by center f', but outside the circle of center i'o. B is equal

to
P[s, < slHopil] = P[sl < sir, < RI

P[sj < 8] 7r(t2)-- (t)(01 -- 2 sin 201) - (t 2 ) (i2 -- 2 sin 202),

P[rj < R] (14)

3



where circular region of radius of 300 meters. For convenience,

-1 _(t 2 )2  polar coordinates were used. The anchor node was placed
01 COS-1 -- (Itt2) (15) at (0, 0). The transmission range was set as R meters. For

each setting of (N, R), we ran 300 simulations, in each
s2 = C -S )t2 (16) of which all nodes are re-deployed from the beginning.2ts

The conditional pdf of t2 is obtained by taking the A. Single-Hop Distance

derivative of (13). We plot (10) and the histogram of single-hop distance

d B collected from simulations together in Fig. 3 (a), which

ft2j51IHop2(r) = dt 7rR2' (17) clearly shows that (10) fits the experimental data very
well. Furthermore, a chi-square test was carried out to

By taking expected value of (17), determine the goodness of fit of (10) to the experimental
oR d B data.

ft2 1Hop2(t) = R fs (s)• -• -ds, (18) 
TABE.

10 dt7rR2TABLE 11

S2 is determined by CHI-SQUARE TEST FOR SINGLE-HoP DISTANCE DISTRIBUTION.

Interval Observed Expected (0 - E)I/E
S2 = V(tl)

2 + (t 2 )
2 

- 2tit 2 cos 4, (19) 1 539 555.37 0.48233

2 543 555.37 0.27538
where 0 is the angle between t1 and t2 and uniformly 3 546 555.37 0.15798
distributed in [-02, 02]. Although it is possible to derive 4 560 555.37 0.038655

5 583 555.37 1.3749
the pdf of s2 from (19), it is awkward to evaluate 6 507 555.37 4.2122
explicitly. Thus, for the end-to-end distance for two and 7 541 555.37 0.37165

more hops, we will postulate their distribution from the 8 571 555.37 0.44007
9 562 555.37 0.079229collected simulation data in the next section. 10 538 555.37 0.54307
11 583 555.37 1.3749

IV. SIMULATIONS AND ANALYSIS 12 564 555.37 0.13421
13 593 555.37 2.5501
14 555 555.37 0.00024208
15 577 555.37 0.84269
16 563 555.37 0.10492
17 566 555.37 0.20359
18 537 555.37 0.60741
19 549 555.37 0.072987
20 499 555.37 5.7209
21 577 555.37 0.84269

S22 535 555.37 0.7469
23 552 555.37 0.020409(a) (b) 24 550 555.37 0.05186

25 611 555.37 5.573
26 552 555.37 0.020409
27 566 555.37 0.20359
28 541 555.37 0.37165
29 570 555.37 0.38557
30 531 555.37 1.0691

Chi-Square Value = 28.8728

(C) (d) The threshold for 30 - 1 = 29 degrees of freedom at
a 0.005 significance level is 52.34. Compared to this,

= 28.8728 is well within the threshold. Thus, we
establish that the data is in good agreement with (10).

B. Two-Hop End-to-end Distance

Since there is no close-form formula for the conditional
pdf of end-to-end distance for two and more hops, we

(e) (f) have to find a fit for it. We postulate the following pdf
for the conditional pdf of two-hop end-to-end distance

Fig. 3. The histogram vs. postulated distribution for end-to-end distances for according to the experimental data plotted in Fig. 3 (b).
given number of hops. (a) One-hop. (b) Two-hop. (e) Three-hop. (d) Four-hop.
(e) Five-hop. (f) Six-hop. The characteristic curve in Fig. 3 (b) clearly shows a Beta

distribution shape. The general pdf of Beta distribution is

All the simulation data are collected from such a scenario (x - a)P 1 (b

that N sensor nodes were uniformly distributed in a fX(_ B(p, q)(b-a)p+-1 (20)
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where p and q are the shape parameters, a and b are the V. AN APPLICATION EXAMPLE: STATISTICAL
lower and upper bounds, respectively, of the distribution, DISTANCE ESTIMATION
and B(p, q) is the beta function. The beta function has
the formula The knowledge about the end-to-end distance for given

number of hops can used widely in applications for

B(p, q) = 1 ty-ldt. (21) WSN. For example, we here propose Statistical Distance
Estimation (SDE).

The bounds a and b can be easily determined as a = 0
and b = 2R. Since the maximum of (20) occurs at P A. Protocol Description
which is at -R in Fig. 3 (b), p = 3 and q = 1 would be SDE is designed for randomly over-densely deployed
a good guess. WSN so that a smaller transmission range can be used
Another noteworthy fact is (20) is valid in [0, 2R] while without loss of connectivity. SDE is used to obtain rela-
we only consider x E [R, 2R] for the conditional two-hop tive rough distance between nodes in order to establish a
end-to-end distance distribution. Therefore, (20) should local coordinate system. SDE starts with a core of anchors
be modified for the given condition x E [R, 2R], that is, with assigned coordinates. These anchors broadcast their

coordinates throughout the sensor network. Other nodes

fxlxE[R,2R] fx(x) (22) keep and relay a minimum-hop beacon from each anchor.
Fx(2R) - Fx (R) A node can estimate its distance from an anchor based

where Fx (x) is the cdf of fx (x). Thus, on the minimum number of hops it takes the beacons
to travel from the anchor. Instead of using the product

(2R - s)s3  of an average single-hop distance and the number of
fs2IHop2(S) =CB(2,4)(2R)5  R < s < 2R,(23) hops in Hop-TERRAIN, SDE uses the mean of end-

to-end distance for minimum number of hops as the
where B(p, q) is the beta function and C estimator. Once a node's distances from three and more
Fx (2R) - Fx (R). Note that C is simply a constant non-collinear anchors are estimated, multilateration can
making be used to determine its location.

[2R (2R - s)ss = 1. (24) In SDE, sensor nodes do not need to have the full

R B(2,4)(2R)5  knowledge on the end-to-end distance distribution. In

When R =30, (24) gives us fact, a table of the mean distance for each possible
number of hops is sufficient. This table can be compiled

= 60 (60 - s)s 3 s empirically from simulations for different node densities
130 B(2, 4)(60)ds and transmission ranges. According the minimum num-

= 0.8125 (25) ber of hops from the anchor, a node can look up the
corresponding mean in the table.

C. Three-And-More-Hop End-to-end Distance

When the number of hops increases beyond three, the B. Error Analysis
end-to-end distance distribution' approaches Gaussian For the single-hop distance, we have derived the theoret-
(See Fig. 3 (d)(e)(f)). For a more formal analysis about ical distribution given by (10). From (12), we obtain
its Gaussianity, we list their skewness and kurtosis in
Table III. Note that both skewness and kurtosis are MSE(Hop,) = IVAR[sjIHopl] = R (26)
virtually zero within tolerance, we postulate Gaussian 3 /2
distribution for three-and-more-hop end-to-end distance.
The mean and std can be estimated from the experimental noe that E increases)linea wt the711ansmisi
data (see Table III). The postulated distribution and range R. When R = 30m, (26) gives us 7.0711, which
histogram are drawn together in Fig. 3 (d)(e)(f), which agrees well with the collected MSE 7.1246 from simula-tions. Other MSEs collected from simulations are also
clearly shows a close match for each case. listed in Table IV, which clearly shows the distance

TABLE III accuracy, indicated by MSE, decreases monotonously
MEANS AND STDS FOR THREE-AND-MORE-HOP END-TO-END with the number of hops. Consider a specific node, if

DISTANCES we decrease R in the hope of decreasing MSE, it would

Number of Hops Mean Std Skewness Kurtosis take more hops for the beacon to reach this node, which
3 72.01 8.2129 -0.10761 -1.0332 could counteract the MSE reduction due to reduced R. As
4 99.45 8.391 -0.079383 -0.97857 rule of thumb, we found the best number of hops is two,
5 127.14 8.5323 -0.064453 -0.93104 that is, it would be advisable to choose a transmission
6 154.96 8.6147 -0.053416 -0.9004 range to keep all nodes within two hops from the anchors.

Considering only the nodes within two hops from the

5



anchors, the average MSE is [3] E. Elnahrawy, X. Li, and R. Martin, "The limits of localization
using signal strength: a comparative study," in Sensor andAd Hoc

7.12 x 5428 + 7.33 x 11376 Communications and Networks, 2004. IEEE SECON 2004. 2004

5428 + 11376 First Annual IEEE Communications Society Conference on, 2004,
pp. 406-414.

= 7.27, (27) [4] D. Niculescu and B. Nath, "Ad hoc positioning system (aps)," in
Global Telecommunications Conference, 2001. GLOBECOM '01.

which is approximately 0.24R. Compared to R/3 dis- IEEE, vol. 5, 2001, pp. 2926-2931 vol.5.
tance error provided by [4], [6], our statistical approach [5] - , "Dv based positioning in ad hoc networks," Telecommuni-

cation Systems, pp. 22(1-4):267-280, 2003.
achieved a lesser error, which is within a quarter of the [6] C. Savarese, J. Rabay, and K. Langendoen, "Robust positioning
transmission range. algorithms for distributed ad-hoc wireless sensor networks," in

USENIX Technical Annual Conference, Monterey, CA, June 2002.

TABLE IV [Online]. Available: citeseer.ist.psu.edu/savareseO2robust.hlttl
[7] Y.-C. Cheng and T. Robertazzi, "Critical connectivity phenomena

MSE FROM SIMULATIONS (R=30M) in multihop radio models:" Communications, IEEE Transactions

Number of Hops MSE Sample Size on, vol. 37, no. 7, pp. 770-777, 1989.

1 7.12 5428 [8] M. G. Kendall and P. A. P. Moran, Geometrical Probability.

2 7.33 11376 Charles Griffin & Co. Ltd., 1963.
3 8.75 18607 [9] S. Vural and E. Ekici, "Analysis of hop-distance relationship in4 9.77 26042 spatially random sensor networks," in MobiHoc '05: Proceedings
5 10.46 33804 of the 6th ACM international symposium on Mobile ad hoc6 10.89 40770 networking and computing. New York, NY, USA: ACM Press,

2005, pp. 320-331.

[10] G. Snedecor and W. Cochran, Statistical Methods. Iowa State
University Press / AMES, 1989.

VI. CONCLUSION

In this paper, we study the modeling of the end-to-
end distance for given number of hops in WSN. The
experiments showed that the distance does not increase
linearly with the number of hops. Therefore, the distance
should be analyzed for each number of hops. We de-
rived the distribution for single-hop distance and also
showed that the complexity of derivation for multiple-hop
distance is beyond practical interest. Thus, we postulate
gamma distribution for two-hop end-to-end distance and
Gaussian distribution for three-and-more-hop end-to-end
distance. Computer simulations showed our postulated
distributions agree well with the histograms.
We also propose Statistical Distance Estimation, in which
statistically exploiting the knowledge of hop-distance
distribution reduces the distance error from R/3 to R/4.
Such fundamental knowledge about end-to-end distance
distribution is applicable to other applications for WSN,
such planning and/or optimization in deployment and
resource management.
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